Solubility and toxic effect of the cuprous thiocyanate antifouling pigment on barnacle larvae

  • V. F. Vetere
  • M. C. Pérez
  • R. Romagnoli
  • M. E. Stupak
  • B. del Amo
Technical Articles


Cuprous oxide is one of the most commonly employed antifouling pigments. However, its red color limits further pigmentation of the paint. On the other hand, cuprous thiocyanate is a white pigment that can be employed when film pigmentation in other colors is required. The purpose of this paper is to study the chemical and biocidal properties of cuprous thiocyanate, in comparison with those of cuprous oxide, with a view of its utilization in paint elaboration.

The solubility, oxidability, particle size distribution, and oil absorption of the pigment were determined along with two methods for its preparation. A solubilization mechanism for cuprous thiocyanate is also outlined.

Biological tests were carried out in the laboratory in order to evaluate the biocidal properties of cuprous thiocyanate. Lt50 and Lt100 were determined for Balanus amphitrite nauplii and cyprids.

White cuprous thiocyanate has, in many ways, similar properties to those of cuprous oxide, although it is less oxidizable and has a greater lethal action than cuprous oxide.


Thiocyanate Antifouling Paint CuSCN Sodium Thiocyanate Biocidal Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. (1).
    Rascio, V., Giúdice, C., and del Amo, B., “Research and Development of Soluble Matrix Antifouling Paints to be Used on Ships, Offshore Platforms and Power Stations. A Review,”Corrosion Reviews, Freund Publishing House, London, III, No. 1–2, 87, 1988.Google Scholar
  2. (2).
    Bird, R.J., “The Microanalysis of Copper Oxide Based Marine Antifouling Paints in the Scanning Electron Microscope,”J. Oil & Colour Chemists’ Assoc., 60, No. 7, 256 (1977).Google Scholar
  3. (3).
    de la Court, F.H. and de Vries, H.J., “The Leaching Mechanism of Cuprous Oxide from Antifouling Paints,”J. Oil & Colour Chemists’ Assoc., 56, No. 8, 388 (1973).Google Scholar
  4. (4).
    Nielsen, E.B., “Bio-Active Materials for Antifouling Coatings,”Proc. 6th International Congress on Marine Corrosion and Fouling, Marine Biology, Greece, 307, 1984.Google Scholar
  5. (5).
    Simmonds, M., “The Case Against Tributyltin,”Oryx. 20, No. 4, 217 (1986).CrossRefGoogle Scholar
  6. (6).
    Bleile, H.R. and Rodgers, S.D., “Marine Coatings,”Federation Series on Coatings Technology, Philadelphia, PA, 14, 1989.Google Scholar
  7. (7).
    Smith, R.M. and Martell, A.E., “Critical Stability Constants,” Vol. IV,Inorganic Complexes, (2nd Printing), Plenum Press, NY, (1981).Google Scholar
  8. (8).
    “Types of Antifouling Paints,”Surface Coatings, Chapman and Hall, London, 1984.Google Scholar
  9. (9).
    Arias, E., Suau, P., and Liesa, F., “Ensayos Técnicos Con Pinturas Marinas Antiincrustantes que Contienen Resinas Acrílicas,”Rev. Iber. Amer. Corros. y Prot. XXIII (3–4), 85, 1992.Google Scholar
  10. (10).
    de la Court, F.H., “A Classification System for Anti-Fouling Paints Based on a Dynamic Flow Test,”J. Oil & Colour Chemists’ Assoc., 69 (9), 241 (1986).Google Scholar
  11. (11).
    Robinson, M.G. and Hall, B.D., “Reversal of Copper Toxicity inAmphora Coffeaeformis: Role of Externally Bound Copper,”Biofouling, 2, 179 (1990).CrossRefGoogle Scholar
  12. (12).
    Callow, M.E., “Fouling Algae from ‘In Service’ Ships,”Botanica Marina, 24, 351, (1986).CrossRefGoogle Scholar
  13. (13).
    Kevan, S.D. and Dixon, D.G., “The Acute Toxicity of Pulse-Dosed Thiocyanate (as KSCN and NaSCN) to Rainbow Trout (Oncorhynchus mykiss) Eggs Before and After Water Hardening,”Aquatic Toxicology, 19, 113 (1991).CrossRefGoogle Scholar
  14. (14).
    Klaasen, D.C., Amdur, M.O., and Doull, J. (Eds.),Casarett-Doull’s Toxicology. The Basic Science of Poissons, 3rd Edition, MacMillan Publishing Co., 88, 1986.Google Scholar
  15. (15).
    Pyefinch, K.A., “Studies on Marine Fouling Organisms,”J. Iron Steel Institute, 214 (1950).Google Scholar
  16. (16).
    Ullman, F., Enciclopedia de Química Industrial, Sec. II, Tomo III, 78, Gili, G. (Ed.), S.A., Bs.As., 1950.Google Scholar
  17. (17).
    Vetere, V.F. and Romagnoli, R., “Processes of Elaboration of Cuprous Oxide. Study of Variables in the Chemical Reduction of Cupric Sulfate and Electrochemical Oxidation of Metallic Copper,”Ind. Eng. Chem. Prod. Res. & Dev., 23, 656 (1984).CrossRefGoogle Scholar
  18. (18).
    Harris, D.C., “Análisis Químico Cuantitativo,” Grupo Editorial Iberoamérica, Méjico, 740, 1992.Google Scholar
  19. (19).
    Snell, F.D. and Snell, C.T.,Colorimetric Methods of Analysis, Vol. 1, Inorganic, New York, 143, 1941.Google Scholar
  20. (20).
    Wisely, B. and Blick, R.A., “Mortality of Marine Invertebrate Larvae in Mercury, Copper, and Zinc Solutions,”Austr. J. Mar. Freshw. Res., 18, No. 1, 63 (1967).CrossRefGoogle Scholar
  21. (21).
    Lang, W.H., Forward, R.B., Jr., Miller, D.C., and Marcy, M., “Acute Toxicity and Sublethai Behavioral Effects of Copper on Barnacle Nauplii (Balanus improvisus),”Marine Biology, 58, 139, 1980.CrossRefGoogle Scholar
  22. (22).
    Giúdice, C., del Amo, B., and Rascio, V., “Influence of Binder Dissolution Rate on the Bioactivity of Antifouling Paints,”Journal of Coatings Technology,56, No. 719, 63 (1984).Google Scholar
  23. (23).
    Bastida, R., Spivak, E., L’Hoste, S., and Adabbo, H., “Las Incrustaciones Biológicas de Puerto Belgrano. I. Estudio de la Fijación Sobre Paneles Mensuales, Período 1971/72,”Corrosión y Protección, 8, 11 (1978).Google Scholar
  24. (24).
    Bastida, R. and Lichtstein, V., “Las Incrustaciones Biológicas de Puerto Belgrano III. Estudio de los Procesos de Epibiosis Registrados Sobre Paneles Acumulativos,”Corrosión y Protección, 10, No. 3, 7 (1979).Google Scholar
  25. (25).
    Romagnoli, R., “Estudio Electroanalítico del Sistema Cobre-Perclorato Cúprico-cloruro de Sodio-agua. Determinación de las Constantes Estequiométricas de equilibrio de los Clorocomplejos de las Cobre,” Tesis, Universidad Nacional de la Plata, Argentina, 1987.Google Scholar
  26. (26).
    Pyefinch, K.A. and Mott, J.C., “The Sensitivity of Barnacles and Their Larvae to Copper and Mercury,”J. Exp. Biol., 25, 276, (1948).Google Scholar
  27. (27).
    Pérez, M.C., Personal Communication to C.I.C., Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina, 1987.Google Scholar
  28. (28).
    del Amo, B., Giúdice, C., and Sindoni, O., “High Build Soluble Matrix Antifouling Paints Based on Vinyl Resin,”Prog. Org. Coat., 17, No. 3, 287 (1989).CrossRefGoogle Scholar
  29. (29).
    Partington, A. and Dunn, P.F., “The Use of Pigment-Extenders in Antifouling Compositions,”Paint Technol., 26, 6 (1962).Google Scholar
  30. (30).
    Partington, A., “Anti-Fouling Compositions. The Mechanisms of Their Actions, and Release of Poisons, in Relation to Paint Formulation,”Paint Technol., 28, 3 (1964).Google Scholar
  31. (31).
    Giúdice, C., del Amo, B., and Benítez, J., “Determination of Metallic Copper, Cuprous Oxide and Cupric Oxide During the Manufacture and Storage of Antifouling Paints,”J. Oil & Colour Chemists’ Assoc., 64, 1 (1981).Google Scholar
  32. (32).
    del Amo, B., Giúdice, C., and Villoria, G., and Villoria, G., Evaluating Antifouling Paints,”European Coatings J., (1–2), 8 (1990).Google Scholar

Copyright information

© Springer Science+Business Media 1997

Authors and Affiliations

  • V. F. Vetere
    • 1
  • M. C. Pérez
    • 1
  • R. Romagnoli
    • 1
  • M. E. Stupak
    • 1
  • B. del Amo
    • 1
  1. 1.CIDEPINTArgentina

Personalised recommendations