Skip to main content
Log in

Tidally phased emergence events in a strongly tidal estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Acoustic backscatter from an active sonar system over a range of six frequencies between 265 kHz and 3 MHz in the tidally dominated Damariscotta River estuary, Maine, United States, revealed that the major emergence event of the night commenced on the first tidal deceleration after dark (3.5–4 h after local slack), irrespective of flow direction. Emergence traps identified the mysid shrimp,Neomysis americana, as the dominant migrator. Water-column-integrated, acoustically estimated biovolume at our 10-m deep study location increased by a factor of about 6 during these large events, entirely dominating the holoplanktonic contribution and likely being a major component in benthic-pelagic coupling. Application of the same algorithm used to locate this nighttime emergence revealed a parallel but considerably smaller daytime emergence event near the same phase of the tide. Daytime trap samples failed to recover the organisms responsible, but transmissometry rejected the alternative hypothesis that we observed resuspension events. We suspect, but have yet only weak evidence, that animals emerging in daylight are copepods rather than mysids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abello, H. U., S. M. Shellito, L. H. Taylor, andP. A. Jumars. 2005. Light-cued emergence and reentry events in a strongly tidal estuary.Estuaries 28:487–499.

    Article  Google Scholar 

  • Alheit, J. andE. Naylor. 1976. Behavioural basis of intertidal zonation inEurydice pulchra Leach.Journal of Experimental Marine Biology and Ecology 23:135–144.

    Article  Google Scholar 

  • Benoit-Bird, K. J. andW. W. L. Au. 2002. Energy: Converting from acoustic to biological resource units.Journal of the Acoustical Society of America 111:2070–2075.

    Article  Google Scholar 

  • Borowsky, B. 1980. Factors that affect juvenile emergence inGammarus palustris.Journal of Experimental Marine Biology and Ecology 42:213–223.

    Article  Google Scholar 

  • Chatfield, C. 1975. The Analysis of Time Series: Theory and Practice. Chapman and Hall, London, U.K.

    Google Scholar 

  • Clutter, R. I. andM. Anraku. 1968. Avoidance of samplers, p. 47–76.In D. J. Tranter and J. H. Fraser (eds.), Zooplankton Sampling, Monographs on Oceanographic Methodology, Volume 2. United Nations Educational, Scientific and Cultural Organization, Paris, France.

    Google Scholar 

  • Greenlaw, C. F. andR. K. Johnson. 1982. Physical and acoustical properties of zooplankton.Journal of the Acoustical Society of America 72:1706–1710.

    Article  CAS  Google Scholar 

  • Greenlaw, C. F. andR. K. Johnson. 1983. Multiple-frequency acoustical estimation.Biological Oceanography 2:227–252.

    Google Scholar 

  • Hays, G. C., H. Kennedy, andB. W. Frost. 2001. Individual variability in diel vertical migration of a marine copepod: Why some individuals remain at depth while others migrate.Limnology and Oceanography 46:2050–2054.

    Article  Google Scholar 

  • Holliday, D. V. 1977. Extracting bio-physical information from the acoustic signatures of marine organisms, p. 619–624.In N. R. Andersen and B. J. Zahuranec (eds.), Ocean Sound Scattering Prediction. Plenum Press, New York.

    Google Scholar 

  • Holliday, D. V. 1993. Zooplankton acoustics, p. 733–740.In B. N. Desai (ed.), Oceanography of the Indian Ocean, A. A. Balkema, Rotterdam, Netherlands.

    Google Scholar 

  • Kringel, K., D. V. Holliday, andP. A. Jumars. 2003. A shallow scattering layer: High-resolution acoustic analysis of nocturnal vertical migration from the seabed.Limnology, and Oceanography 48:1223–1334.

    Google Scholar 

  • Lawrie, S. M. andD. G. Raffaelli. 1998. In situ swimming behavior of the amphipodCorophium volutator.Journal of Experimental Marine Biology and Ecology 224:237–251.

    Article  Google Scholar 

  • Mathworks. 1998. MATLAB: Signal Processing Toolbox. Mathworks, Natick, Massachusetts.

    Google Scholar 

  • Mayer, L. M., D. W. Townsend, N. R. Pettigrew, T. C. Loder, M. W. Wong, D. Kistner-Morris, A. K. Laursen, A. D. Schoudel, C. Conairis, J. Brown, and C. Newell. 1996. The Kennebec, Sheepscot and Damriscotta River estuaries: Seasonal oceanographic data. University of Maine, Department of Oceanography Technical Report #9601:1-110. Orono, Maine.

  • McGehee, D. E., R. L. O’Driscoll, andL. V. Martin-Traykovski. 1998. Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz.Deep-Sea Research II 45:1273–1294.

    Article  Google Scholar 

  • Oishi, K. andM. Saigusa. 1997. Nighttime, emergence patterns of planktonic and benthic crustaceans in a shallow subtidal environment.Journal of Oceanography 53:611–621.

    Google Scholar 

  • Pieper, R. E. andD. V. Holliday. 1984. Acoustic measurements of zooplankton distributions in the sea.Journal du Conseil pour Exploration de la Mer 41:226–238.

    Google Scholar 

  • Roast, S. D., J. Widdows, N. Pope, andM. B. Jones. 2004. Sediment-biota interactions: Mysid feeding activity enhances water turbidity and sediment erodability.Marine Ecology Progress Series 128:145–154.

    Article  Google Scholar 

  • Takahashi, K. andK. Kawaguchi. 1997. Diel and tidal migrations of the sand-burrowing mysidsArchaeomysis kokuboi, A. japonica, andIiella oshimai, in Otuschi Bay, northeastern Japan.Marine Ecology Progress Series 148:95–107.

    Article  Google Scholar 

  • Wang, Z. andJ. C. Dauvin. 1994. The suprabenthic crustacean fauna of the infralittoral fine sand community from the Bay of Seine (Eastern English Channel): Composition, swimming activity and diurnal variation.Cahiers de Biologie Marine 35:135–155.

    Google Scholar 

Sources of Unpublished Materials

  • Briggs, A. personal communication. P.O. Box 263, Bremen, Maine 04551.

  • Sato, M. unpublished data. Darling Marine Center, University of Maine, 193 Clark’s Cove Road, Walpole, Maine 04573.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Jumars.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, L.H., Shellito, S.M., Abello, H.U. et al. Tidally phased emergence events in a strongly tidal estuary. Estuaries 28, 500–509 (2005). https://doi.org/10.1007/BF02696061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02696061

Keywords

Navigation