Skip to main content
Log in

Persistence of tidally-oriented vertical migration by zooplankton in a temperate estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Tidal vertical migration by zooplankton is a common phenomenon in estuaries, usually associated with landward movement of meroplankton or position maintenance of holoplankton. Little is known about the persistence of this behavior, its spatial variability, or its response to changing environmental conditions. We extended a previous study of tidal movements of zooplankton in the low-salinity zone (LSZ) of the San Francisco estuary in 1994 to include data from two additional years with very different hydrology. Freshwater flow during sampling in 1995 was about 7-fold greater than in 1994; the LSZ was about 28 km further seaward, and gravitational circulation in the LSZ was strong. In 1996 freshwater flow and LSZ position were intermediate but, because the LSZ was in shallower water in 1996 than in 1995, gravitational circulation was uncommon. Behavior of copepods in both years was similar to that reported in 1994 with some tidal migration observed during most cruises. An exception was the introduced carnivorous copepodTortanus dextrilobatus, which did not migrate and maintained a position deep in the water column (1995 only). In 1996, mysids mainly stayed near the bottom with evidence for vertical migration from only 1 of 6 data sets, whereas amphipods migrated slightly on a diel schedule; these behaviors contrasted with the tidal migration observed in 1994. The bay shrimpCrangon franciscorum did not appear to migrate, but was more abundant in the water column during both ebb and flood, suggesting passive vertical dispersal. Zooplankton did not appear to maintain position by interactions with lateral circulation cells. The results for copepods suggest rigidity in behavior with little or no relaxation of the vertical movement in 1995 when strong gravitational circulation would have made upstream movement relatively easy. Mysids and amphipods altered their behavior depending on local conditions related to freshwater flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alldredge, A. L. andW. M. Hamner. 1980. Recurring aggregation of zooplankton in a tidal current.Estuarine and Coastal Marine Science 10:31–37.

    Article  Google Scholar 

  • Alpine, A. E. andJ. E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary.Limnology and Oceanography 37:946–955.

    Google Scholar 

  • Arthur, J. A. andM. D. Ball. 1979. Factors influencing the entrapment of suspended material in the San Francisco bay-delta estuary, p. 143–174.In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Bennett, W. A., W. J. Kimmerer, and J. R. Burau. In press. Plasticity in vertical migration by native and exotic estuarine fishes in a fluctuating low salinity zone.Limnology and Oceanography.

  • Bousfield, E. L., G. Filteau, M. O'Neill, andP. Gentes. 1975. Population dynamics of zooplankton in the middle St. Lawrence estuary, p. 325–351.In L. E. Cronin (ed.), Estuarine Research, Academic Press, New York.

    Google Scholar 

  • Busch, A. andU. Brenning. 1991. Studies on the status ofEurytemora affinis (Poppe, 1880) (Copepoda, Calanoida).Crustaceana 62:13–38.

    Article  Google Scholar 

  • Cleveland, W. S. 1993. Visualizing Data. Hobart Press, Summit, New Jersey.

    Google Scholar 

  • Cole, B. E., J. E. Cloern, andA. E. Alpine. 1986. Biomass and productivity of three phytoplankton size classes in San Francisco Bay.Estuaries 9:117–126.

    Article  Google Scholar 

  • Cordell, J. R., C. A. Simenstad, andC. A. Morgan. 1992. The Asian calanoid copepod (Pseudodiaptomus inopinus) in Pacific Northwest rivers—Biology of an invasive zooplankter.Northwest Environmental Journal 8:164–165.

    Google Scholar 

  • Crawford, D. W. andD. A. Purdie. 1992. Evidence for avoidance of flushing from an estuary by a planktonic, phototrophic ciliate.Marine Ecology Progress Series 79:259–265.

    Article  Google Scholar 

  • Cronin, T. W. 1981. Tidally timed behaviors: Their effects on larval distributions in estuaries.Estuaries 4:238.

    Google Scholar 

  • Cronin, T. W. andR. B. Forward, Jr. 1979. Tidal vertical migration: An endogenous rhythm in estuarine crab larvae.Science 205:1020–1022.

    Article  CAS  Google Scholar 

  • Dauvin, J.-C. andJ. J. Dodson. 1990. Relationship between feeding incidence and vertical and longitudinal distribution of rainbow smelt larvae (Osmerus mordax) in a turbid well-mixed estuary.Marine Ecology Progress Series 60:1–12.

    Article  Google Scholar 

  • Dodson, J. J., J.-C. Dauvin, R. Ingram, andB. D'Anglejan. 1989. Abundance of larval rainbow smelt (Osmerus mordax) in relation to the maximum turbidity zone and associated macroplanktonic fauna of the middle St. Lawrence estuary.Estuaries 12:66–81.

    Article  Google Scholar 

  • Fancett, M. S. andW. J. Kimmerer 1985. Vertical migration of the demersal copepodPseudodiaptomus as a means of predator avoidance.Journal of Experimental Marine Biology and Ecology 88:31–43.

    Article  Google Scholar 

  • Forbes, A. T. andM. C. Benfield. 1986. Tidal behaviour of post-larval penaeid prawns (Crustacea: Decapoda: Penaeidae) in a southeast African estuary.Journal of Experimental Marine Biology and Ecology 102:23–34.

    Article  Google Scholar 

  • Fortier, L. andW. C. Leggett. 1983. Vertical migrations and transport of larval fish in a partially mixed estuary.Canadian Journal of Fisheries and Aquatic Sciences 40:1543–1555.

    Google Scholar 

  • Geyer, W. R. 1993. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum.Estuaries 16:113–125.

    Article  Google Scholar 

  • Godin, G. 1972. The Analysis of Tides. University of Toronto Press, Toronto, Canada.

    Google Scholar 

  • Harden Jones, F. R., G. P. Arnold, M. Greer Walker, andP. Scholes. 1979. Selective tidal stream transport and the migration of plaice (Pleuronectes platessa L.) in the southern North Sea.Journal du Conseil Internationale pour Exploration du Mer 38:331–337.

    Google Scholar 

  • Hatfield, S. E. 1985. Seasonal and interannual variation in distribution and population abundance of the shrimpCrangon franciscorum in San Francisco Bay.Hydrobiologia 129:199–210.

    Article  Google Scholar 

  • Heinle, D. R. andD. A. Flemer. 1975. Carbon requirements of a population of the estuarine copepodEurytemora affinis.Marine Biology 31:235–247.

    Article  Google Scholar 

  • Hilmer, T. andG. C. Bate. 1991. Vertical migration of a flagellate-dominate bloom in a shallow South African estuary.Botanica Marina 34:113–121.

    Article  Google Scholar 

  • Hollibaugh, J. T. andP. S. Wong. 1996. Distribution and activity of bacterioplankton in San Francisco Bay, p. 263–288.In: J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Hough, A. R. andE. Naylor. 1991. Field studies on retention of the planktonic copepodEurylemora affinis in a mixed estuary.Marine Ecology Progress Series 76:115–122.

    Article  Google Scholar 

  • Hough, A. R. andE. Naylor. 1992. Distribution and position maintenance behaviour of the estuarine mysidNeomysis integer.Journal of the Marine Biological Association of the U.K. 72:869–876.

    Article  Google Scholar 

  • Hough, A. R. andE. Naylor. 1992b. Endogenous rhythms of circatidal swimming activity in the estuarine copepodEurytemora affinis (Poppe).Journal of Experimental Marine Biology and Ecology 161:27–32.

    Article  Google Scholar 

  • Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. Schubel, andT. J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations.Ecological Applications 5:272–289.

    Article  Google Scholar 

  • Jay, D. A. andJ. D. Musiak. 1994. Particle trapping in estuarine tidal flows.Journal of Geophysical Research C. Oceans 99:20445–20461.

    Article  Google Scholar 

  • Jerling, H. L. andT. H. Wooldridge. 1992. Lunar influence on distribution of a calanoid copepod in the water column of a shallow, temperate estuary.Marine Biology 112:309–312.

    Article  Google Scholar 

  • Jones, K. L., C. A. Simenstad, D. L. Higley, andD. L. Bottom. 1990. Community structure, distribution, and standing stock of benthos, epibenthos, and plankton in the Columbia River estuary.Progress in Oceanography 25:211–242.

    Article  Google Scholar 

  • Ketchum, B. H. 1954. Relation between circulation and planktonic populations in estuaries.Ecology 35:191–200.

    Article  Google Scholar 

  • Kimmerer, W. J., J. R. Burau, andW. A. Bennett. 1998. Tidally-oriented vertical migration and position maintenance of zooplankton in a temperate estuary.Limnology and Oceanography 43:1697–1709.

    Article  Google Scholar 

  • Kimmerer, W. J., J. H. Cowan, L. W. Miller, andK. A. Rose. 2001. Analysis of an estuarine striped bass population: Effects of environmental conditions during early life.Estuaries 24:556–574.

    Article  Google Scholar 

  • Kimmerer, W. J., E. Gartside, andJ. J. Orsi. 1994. Predation by an introduced clam as the probable cause of substantial declines in zooplankton in San Francisco Bay.Marine Ecology Progress Series 113:81–93.

    Article  Google Scholar 

  • Kimmerer, W. J. andA. D. McKinnon. 1987. Zooplankton in a marine bay. II. Vertical migration to maintain horizontal distributions.Marine Ecology Progress Series 41:53–60.

    Article  Google Scholar 

  • Kimmerer, W. J. andJ. J. Orst. 1996. Causes of long-term declines in zooplankton in the San Francisco Bay estuary since 1987, p. 403–424.In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Laprise, R. andJ. J. Dodson. 1989. Ontogeny and importance of tidal vertical migrations in the retention of larval smeltOsmerus mordax in a well-mixed estuary.Marine Ecology Progress Series 55:101–111.

    Article  Google Scholar 

  • Laprise, R. andJ. J. Dodson. 1984. Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence estuary.Marine Ecology Progress Series 107:67–81.

    Article  Google Scholar 

  • Lee, C. E. 1999. Rapid and repeated invasions of fresh water by the copepodEurytemora affinis.Evolution 53:1423–1434.

    Article  Google Scholar 

  • Lee, C. E. 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”.Evolution 54:2014–2027.

    Article  CAS  Google Scholar 

  • Lehman, P. W. 1992. Environmental factors associated with long-term changes in chlorophyll concentration in the Sacramento-San Joaquin Delta and Suisun Bay, California.Estuaries 15:335–348.

    Article  CAS  Google Scholar 

  • Miller, C. B. 1983. The zooplankton of estuaries, p. 103–149.In B. H. Ketchum (ed.), Estuaries and Enclosed Seas. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Monismith, S. G., J. R. Burau, andM. Stacey. 1996. Stratification dynamics and gravitational circulation in northern San Francisco Bay, p. 123–153.In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Monismith, S. G., W. J. Kimmerer, J. R. Burau, and M. Stacey. In press. Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay.Journal of Physical Oceanography.

  • Morgan, C. A., J. R. Cordell, andC. A. Simenstad. 1997. Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region.Marine Biology 129: 309–317.

    Article  Google Scholar 

  • Nichols, F., J. Cloern, S. Luoma, andD. Peterson. 1986. The modification of an estuary.Science 231:567–573.

    Article  CAS  Google Scholar 

  • Orsi, J. andW. Mecum. 1986. Zooplankton distribution and abundance in the Sacramento-San Joaquin Delta in relation to certain environmental factors.Estuaries 9:326–339.

    Article  CAS  Google Scholar 

  • Orsi, J. J. 1986. Interaction between diel vertical migration of a mysidacean shrimp and two-layered estuarine flow.Hydrobiologia 137:79–87.

    Article  Google Scholar 

  • Orsi, J. J. andS. Ohtsuka. 1999. Introduction of the Asian copepodsAcartiella sinensis, Tortanus dextrilobatus (Copepoda: Calanoida), andLimnoithona tetraspina (Copepoda: Cyclopoida) to the San Francisco estuary, California, USA.Plankton Biology and Ecology 46:128–131.

    Google Scholar 

  • Peterson, D. H., T. J. Conomos, W. W. Broenkow, andP. C. Doherty. 1975. Location of the non-tidal current null zone in northern San Francisco Bay.Estuarine and Coastal Marine Science 3:1–11.

    Article  Google Scholar 

  • Postma, V. H. andK. Kalle. 1955. On the development of turbid zones in the lower course of rivers with special consideration of conditions in the lower Elbe.Sonderdruck aus der Deutschen Hydrographischen Zeitschrift 8:137–144.

    Article  Google Scholar 

  • Power, J. H. 1997. Time and tide wait for no animal: Seasonal and regional opportunities for tidal stream transport or retention.Estuaries 20:312–318.

    Article  Google Scholar 

  • Prairie, Y. T., R. H. Peters, andD. F. Bird. 1995. Natural variability and the estimation of empirical relationships: A reassessment of regression methods.Canadian Journal of Fisheries and Aquatic Sciences 52:788–798.

    Article  Google Scholar 

  • Ricker, W. E. 1973. Linear regression in fishery research.Journal of the Fisheries Research Board of Canada 30:409–434.

    Google Scholar 

  • Rogers, H. 1940. Occurrence and retention of plankton within an estuary.Journal of the Fisheries Research Board of Canada 5: 164–171.

    Google Scholar 

  • Runge, J. A. andY. Simard. 1990. Zooplankton of the St. Lawrence estuary—The imprint of physical processes on its composition and distribution, p. 296–320.In M. I. El-Sabh and N. Silverberg (ed.), Oceanography of a Large-scale Estuarine System Springer, New York.

    Google Scholar 

  • Schlacher, T. A. andT. H. Wooldridge. 1994. Tidal influence on distribution and behaviour of the estuarine opossum shrimpGastrosaccus brevifissura, p. 307–312.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen & Olsen., Fredensborg, Denmark.

    Google Scholar 

  • Schoellhamer, D. H. 2001. Influence of salinity, bottom topography, and tides on locations of estuarine turbidity maxima in northern San Francisco Bay, p. 343–356.In W. H. McAnally and A. J. Mehta (eds.), Coastal and Estuarine Fine Sediment Processes, Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Simenstad, C. A., L. F. Small, andC. D. McIntire. 1990. Consumption processes and food web structure in the Columbia River estuary.Progress in Oceanography 25:271–297.

    Article  Google Scholar 

  • Speirs, D. C. andW. S. C. Gurney. 2001. Population persistence in rivers and estuaries.Ecology 82:1219–1237.

    Article  Google Scholar 

  • Trinast, E. M. 1975. Tidal currents andAcartia distributions in Newport Bay, California.Estuarine and Coastal Marine Science 3:165–176.

    Article  CAS  Google Scholar 

  • Venables, W. N. andB. N. Ripley. 1997. Modern Applied Statistics with S-plus, 2nd edition, Springer-Verlag, New York.

    Google Scholar 

  • Vincent, W. F., J. J. Dodson, N. Bertrand, andJ. J. Frenette. 1996. Photosynthetic and bacterial production gradients in a larval fish nursery: The St. Lawrence River transition zone.Marine Ecology Progress Series 139:227–238.

    Article  Google Scholar 

  • Vuorinen, I. 1987. Vertical migration ofEurytemora (Crustacea, copepoda): A compromise between the risks of predation and decreased fecundity.Journal of Plankton Research 9:1037–1046.

    Article  Google Scholar 

  • Walter, T. C. 1987. Review of the taxonomy and distribution of the demersal copepod genuspseudodiaptonus (Calanoida: Pseudodiaptomidae) from southern Indo-Pacific waters.Australian Journal of Marine and Freshwater Research 38:363–396.

    Article  Google Scholar 

  • Wang, Z., E. Thiebaut, andJ. C. Dauvin. 1995. Spring abundance and distribution of the ctenophorePleurobrachia pileus in the Seine estuary: Advective transport and diel vertical migration.Marine Biology 124:313–324.

    Article  Google Scholar 

  • Welch, J. M., R. B. Forward, Jr., andP. A. Howd. 1999. Behavioral responses of blue crabCallinectes sapidus postlarvae to turbulence: Implications for selective tidal stream transport.Marine Ecology Progress Series 179:135–143.

    Article  Google Scholar 

  • Wooldridge, T. andT. Erasmus. 1980. Utilization of tidal currents by estuarine zooplankton.Estuarine and Coastal Marine Science 11:107–114.

    Article  Google Scholar 

Source of Unpublished Materials

  • Interagency Ecological Program for the San Francisco Estuary, unpublished data. http://www.iep.water.ca.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Kimmerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimmerer, W.J., Burau, J.R. & Bennett, W.A. Persistence of tidally-oriented vertical migration by zooplankton in a temperate estuary. Estuaries 25, 359–371 (2002). https://doi.org/10.1007/BF02695979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02695979

Keywords

Navigation