Skip to main content
Log in

Micromechanic modeling and analysis of unsteady-state granular flow in a cylindrical hopper

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a numerical study of the micro- and macro-dynamic behavior of the unsteady-state granular flow in a cylindrical hopper with flat bottom by means of a modified discrete-element method (DEM) and an averaging method. The results show that the trends of the distributions of the microscopic properties such as the velocity and forces, and the macroscopic properties such as the velocity, mass density, stress and couple stress of the unsteady-state hopper flow are similar to those of steady-state hopper flow, and do not change much with the discharge of particles. However, the magnitudes of the macroscopic properties in different regions have different rates of variation. In particular, the magnitudes of the two normal stresses vary little with time in the orifice region, but decrease in other regions. The magnitude of the shear stress decreases with time when far from the bottom wall and central axis of the hopper. The results also indicate that DEM can capture the key features of the granular flow, and facilitated with a proper averaging method, can also generate information helpful to the test and development of an appropriate continuum model for granular flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, Granular matter: a tentative view.Rev. Mod. Phys. 71 (1999) 374–382.

    Article  Google Scholar 

  2. S.F. Edwards and D.V. Grinev, Transmission of stress in granular materials as a problem of statistical mechanics.Physica A 302 (2001) 162–186.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. P.A. Cundall and O.D.L. Strack, A discrete numerical model for granular assemblies.Geotechnique 29 (1979) 47–65.

    Article  Google Scholar 

  4. P.A. Langston, U. Tüzün and D.M. Heyes, Discrete element simulation of internal stress and flow fields in funnel flow hoppers.Powder Technol. 85 (1995) 153–169.

    Article  Google Scholar 

  5. R. Gutfraind and O. Pouliquen, Study of the origin of shear zones in quasi-state vertical chute flows by using discrete particle simulations.Mech. Mat. 24 (1996) 273–285.

    Article  Google Scholar 

  6. P.W. Cleary and M.L. Sawley, DEM modeling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge.Appl. Math. Model. 26 (2002) 89–111.

    Article  MATH  Google Scholar 

  7. K. Tanaka, M. Nishida, T. Kunimochi and T. Takagi, Discrete element simulation and experiment for dynamic response of two-dismensional granular matter to the impact of a spherical projectile.Powder Technol. 124 (2002) 160–173.

    Article  Google Scholar 

  8. A.B. Yu, DEM-an effective method for particalate matter. In:Discrete Element Methods: Numerical Modeling of Discontinua. Virginia: Ameriacan Society of Civil Engineers (2002) pp. 17–22.

    Google Scholar 

  9. H.P. Zhu and A.B. Yu, Steady-state granular flow in a 3D cylindrical hopper with flat bottom using DEM simulation: microscopic analysis.J. Phys. D. Appl. Phys. 37 (2004) 1497–1508.

    Article  Google Scholar 

  10. C.K.K. Lun, S.B. Savage, D.J. Jeffrey and N. Chepurniy, Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general fiowfield.J. Fluid Mech. 140 (1984) 223–256.

    Article  MATH  ADS  Google Scholar 

  11. C.S. Campbell, Rapid granular flows.Annu. Rev. Fluid Mech. 22 (1990) 57–92.

    Article  ADS  Google Scholar 

  12. R.M. Nedderman,Statics and Kinematics of Granular Materials. New York: Cambridge University Press (1992) 352 pp.

    Google Scholar 

  13. W. Powrie,Soil Mechanics: Concepts and Applications. London: E & FN Spon (1997) 420 pp.

    Google Scholar 

  14. O.R. Walton and R.L. Braun, Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks.J. Rheology 30 (1986) 949–980.

    Article  ADS  Google Scholar 

  15. Y. Zhang and C.S. Campbell, The interface between fluid-like and solid-like behaviour in two-dimensional granular flows.J. Fluid Mech. 237 (1992) 541–568.

    Article  ADS  Google Scholar 

  16. M. Babic, Average balance equations for granular materials.Int. J. Eng. Sci. 35 (1997) 523–548.

    Article  MATH  MathSciNet  Google Scholar 

  17. H.P. Zhu and A.B. Yu, Averaging method of granular materials.Phys. Rev. E 66 (2002) 021302.

    Article  ADS  Google Scholar 

  18. K.L. Johnson,Contact Mechanics. Cambridge, UK: Cambridge University Press (1985) 452 pp.

    MATH  Google Scholar 

  19. R.D. Mindlin and H. Deresiewicz, Elastic spheres in contact under varying oblique forces.J. Appl. Mech. 20(1953) 327–344.

    MATH  MathSciNet  Google Scholar 

  20. K. Iwashita and M. Oda, Rolling resistance at contacts in the simulation of shear band development by DEM.J. Engrg. Mech., ASCE 124 (1998) 285–292.

    Article  Google Scholar 

  21. A. Tordesillas and S. Walsh, Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media.Powder Technol. 124 (2002) 106–111.

    Article  Google Scholar 

  22. H.P. Zhu and A.B. Yu, The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow.Physica A 325 (2003) 347–360.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. J.P.K. Seville, U. Tüzün and R. Clift,Processing of Particulate Solids, Landon: Blackie Academic and Professional (1997) 372 pp.

    Google Scholar 

  24. G.P. Deutsch and L.C. Schmidt, Pressures on silo walls.J. Engrg. Industry, ASME, Series B 91 (1969) 450–459.

    Google Scholar 

  25. U. Tüzün, G.T. Houlsby, R.M. Nedderman and S.B. Savage, The flow of granular-materials — 2. velocity distributions in slow flow.Chem. Eng. Sci. 37 (1982) 1691–1709.

    Article  Google Scholar 

  26. H. Sakaguchi and F. Ozaki, Analysis of the formation of arches plugging the flow of granular Materials. In: C. Thornton (ed.),Powders and Grains. Rotterdam: A.A. Balkema (1993) 351–355.

    Google Scholar 

  27. N.L. Johnson, Systems of frequency curves generated by methods of translation,Biometrika 36 (1949) 149–176.

    MATH  MathSciNet  Google Scholar 

  28. H.P. Zhu and A.B. Yu, Steady-state granular flow in a 3D cylindrical hopper with flat bottom using DEM simulation: macroscopic analysis. (2004) (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H.P., Yu, A.B. Micromechanic modeling and analysis of unsteady-state granular flow in a cylindrical hopper. J Eng Math 52, 307–320 (2005). https://doi.org/10.1007/BF02694043

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02694043

Key words

Navigation