Skip to main content
Log in

An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The objective of this paper is to assess the predictive capability of different classes of extended plasticity theories (bounding surface plasticity, generalized plasticity and generalized tangential plasticity) in the modeling of incremental nonlinearity, which is one of the most striking features of the mechanical behavior of granular soils, occurring as a natural consequence of the particular nature of grain interactions at the microscale. To this end, the predictions of the various constitutive models considered are compared to the results of a series of Distinct Element simulations performedad hoc. In the comparison, extensive use is made of the concept of incremental strain-response envelope in order to assess the directional properties of the material response for a given initial state and stress history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Sokolowski,Statics of Granular Media. Oxford: Pergamon (1965) 270 pp.

    Google Scholar 

  2. W.F. Chen,Limit Analysis and Soil Plasticity. Amsterdam: Elsevier (1976) 637 pp.

    Google Scholar 

  3. K.H. Roscoe and J.B. Burland, On the generalised stress-strain behaviour of ‘wet’ clay. In: J. Heyman and F.A. Leckie (eds.),Engineering Plasticity. Cambridge: Cambridge Univ. Press (1968) pp. 535–609.

    Google Scholar 

  4. A.N. Schofield and C.P. Wroth,Critical State Soil Mechanics. London: McGraw-Hill (1968) 310 pp.

    Google Scholar 

  5. G. Gudehus, F. Darve and I. Vardoulakis (eds.), Constitutive Relations for Soils. Rotterdam: Balkema (1984) 497 pp.

    Google Scholar 

  6. A.S. Saada and G.F. Bianchini (eds.),Constitutive Equations for Granular Non-Cohesive Soils. Rotterdam: Balkema (1989) 733 pp.

    Google Scholar 

  7. D. Kolymbas (ed.),Modern Approaches to Plasticity. Amsterdam: Elsevier (1993) 780 pp.

    Google Scholar 

  8. D. Kolymbas (ed.),Constitutive Modelling of Granular Materials. Berlin: Springer (1999) 554 pp.

    Google Scholar 

  9. F. Calvetti, G. Viggiani and C. Tamagnini, A numerical investigation of the incremental behavior of granular soils.Rivista Italiana di Geotecnica, 37 (2003) 11–29.

    Google Scholar 

  10. C.A. Truesdell and W. Noll, The non-linear field theories of mechanics. In: S. Flügge (ed.),Encyclopedia of Physics, vol. III/3. Berlin: Springer (1965) pp. 1–602

    Google Scholar 

  11. D.R. Owen and W.O. Williams, On the time derivatives of equilibrated response functions.Arch. Rat’l. Mech. Anal. 33 (1969) 288–306.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Tamagnini and G. Viggiani, Constitutive modelling for rate-independent soils: a review.Revue FranÇaise de Génie Civil. 6 (2002) 933–974.

    Google Scholar 

  13. F. Darve, The expression of rheological laws in incremental form and the main classes of constitutive equations. In:F Darve (ed.),Geomaterials: Constitutive Equations and Modelling. Amsterdam: Elsevier (1990) pp. 123–148.

    Google Scholar 

  14. A. Anandarajah, K. Sobhan and N. Kuganenthira, Incremental stress-strain behavior of a granular soil.J. Geotech. Engng. ASCE 121 (1995) 57–68.

    Article  Google Scholar 

  15. P. Royis and T. Doanh, Theoretical analysis of strain response envelopes using incrementally non-linear constitutive equations.Int. J. Num. Anal. Meth. Geomech. 22 (1998) 97–132.

    Article  MATH  Google Scholar 

  16. J.-P. Bardet and J. Proubet, Application of micromechanics to incrementally nonlinear constitutive equations for granular media. In: J. Biarez and R. Gourves (eds.),Proc. Powders and Grains 1989. Rotterdam: Balkema (1989) pp. 265–273.

    Google Scholar 

  17. J.-P. Bardet, Numerical tests with discrete element method. In: D. Kolymbas (ed.),Proc. Modern Approaches to Plasticity. Amsterdam: Elsevier (1993) pp. 179–197.

    Google Scholar 

  18. J.-P. Bardet, Numerical simulations of the incremental responses of idealized granular materials.Int. J. Plasticity 10 (1994) 879–908.

    Article  MATH  Google Scholar 

  19. F. Calvetti and C. di Prisco, Fabric evolution of granular materials: a numerical approach. In:Proc. First Forum Young European Researchers. Liege, Belgium (1993) pp. 115–120.

  20. F. Calvetti, C. Tamagnini and G. Viggiani, On the incremental behaviour of granular soils. In G.N. Pande and S. Pietruszczak (eds.),Proc. NUMOG VIII. Rotterdam: Balkema (2002) pp. 3–10.

    Google Scholar 

  21. F. Calvetti, G. Viggiani and C. Tamagnini, Micromechanical inspection of constitutive modelling. In: C. Viggiani (ed.),Constitutive Modelling and Analysis of Boundary Value Problems in Geotechnical Engineering. Benevento: Hevelius (2003) pp. 187–216.

    Google Scholar 

  22. ITASCA.PFC-3D User Manual, Itasca Consulting Group, Minneapolis (1995) 110 pp.

    Google Scholar 

  23. P.A. Cundall, A computer model for simulating progressive large scale movements in blocky rock systems. In:Proc. Symp. ISRM, Nancy, France. Rotterdam: Balkema (1971) Paper no. 11–8.

    Google Scholar 

  24. P.A. Cundall and O.D.L. Strack, A discrete numerical model for granular assemblies.Géotechnique 29 (1979) 47–65.

    Google Scholar 

  25. P.A. Cundall and R.D. Hart, Numerical modeling of discontinua.Engg. Comp. 9 (1992) 101–113.

    Google Scholar 

  26. Y. Kishino and C. Thornton, Discrete element approaches. In: F. Oka and T. Tamura (eds.),Mechanics of Granular Materials. An Introduction. Rotterdam: Balkema (1999) pp. 147–223.

    Google Scholar 

  27. C. Tamagnini, G. Viggiani, R. Chambon and J. Desrues, Evaluation of different strategies for the integration of hypoplastic constitutive equations: Application to the cloe model.Mech. Cohesive-Frictional Mater 5 (2000) 263–289.

    Article  Google Scholar 

  28. G. Gudehus, A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In: Wittke (ed.),3rd Int. Conf. Num. Meth. Geomech. Rotterdam: Balkema (1979) pp. 1309–1324.

    Google Scholar 

  29. R. Nova, Sinfonietta classica: an exercise on classical soil modelling. In: Saada and Bianchini (eds.),Constitutive Equations for Granular Non-Cohesive Soils. Rotterdam: Balkema (1988) pp. 501–519.

    Google Scholar 

  30. C. di Prisco,Sand Anisotropy: Experimental Analysis and Mathematical Modelling. PhD thesis, Politecnico di Milano (1993) 222 pp. (in Italian).

  31. di Prisco, R. Nova and J. Lanier, A mixed isotropic-kinematic hardening constitutive law for sand. In: D. Kolymbas (ed.),Modern Approaches to Plasticity. Amsterdam: Elsevier (1993) pp. 83–124.

    Google Scholar 

  32. R. Nova and D.M. Wood, A constitutive model for sand in triaxial compression.Int. J. Num. Anal. Meth. Geomech. 3 (1979) 255–278.

    Article  Google Scholar 

  33. C. Tamagnini, R. Castellanza and R. Nova, A generalized backward euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials.Int. J. Num. Anal. Meth. Geomech. 26 (2002) 963–1004.

    Article  MATH  Google Scholar 

  34. J.C. Simo and T.J.R. Hughes,Computational Inelasticity. Berlin: Springer (1997) 392 pp.

    Google Scholar 

  35. G. Maier, On associative incremental elastic-plastic constitutive models.Rend. 1st. Lombardo di Scienze e Lettere 100 (1966) 809–838. (in Italian).

    MathSciNet  Google Scholar 

  36. R.I. Borja and C. Tamagnini, Cam-clay plasticity, part III: Extension of the infinitesimal model to include finite strains.Comp. Meth. Appl. Mech. Engng. 155 (1998) 73–95.

    Article  MATH  Google Scholar 

  37. R. Lagioia, A.M. Puzrin and D.M. Potts, A new versatile expression for yield and plastic potential surfaces.Comput. Geotech. 19 (1996) 171–191.

    Article  Google Scholar 

  38. H.A.M. van Eekelen, Isotropic yield surfaces in three dimensions for use in soil mechanics.Int. J. Numer. Anal. Meth. Geomech. 4 (1980) 89–101.

    Article  MATH  Google Scholar 

  39. A. Anandarajah and Y.F. Dafalias, Bounding surface plasticity. III: Application to anisotropic cohesive soils.J. Engng. Mech. ASCE 112 (1986) 1292–1318.

    Google Scholar 

  40. D.M. Wood,Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge Univ. Press (1990) 462 pp.

    MATH  Google Scholar 

  41. R. Nova, On the hardening of soils.Arch. Mech. Stosowanej 29 (1977) 445–458.

    Google Scholar 

  42. J.H. Atkinson, D. Richardson and S.E. Stallebrass, Effect of recent stress history on the stiffness of overconsolidated clay.Géotechnique 40 (1986) 531–540.

    Article  Google Scholar 

  43. S.E. Stallebrass,Modelling the Effect of Recent Stress History on the Behaviour of Overconsolidated Soils. PhD thesis. The City University, London (1990) 164 pp.

  44. D.M. Wood, Laboratory investigations of the behaviour of soils under cyclic loading: a review. In: G.N. Pande and O.C. Zienkiewicz (eds.),Soil Mechanics — Cyclic and Transient Loads. Chichester: Wiley (1982) pp. 513–582.

    Google Scholar 

  45. Y.F. Dafalias and L.R. Herrmann, Bounding surface formulation of soil plasticity. In: G.N. Pande and O.C. Zienkiewicz (eds.),Soil Mechanics — Cyclic and Transient Loads. Chichester: Wiley (1982) pp. 253–283.

    Google Scholar 

  46. Y.F. Dafalias, Bounding surface plasticity. I: Mathematical foundation and hypoplasticity.J. Engng. Mech., ASCE 112 (1986) 966–987.

    Google Scholar 

  47. Y.F. Dafalias and L. R. Herrmann, Bounding surface plasticity. II: Application to isotropic cohesive soils.J. Engng. Mech., ASCE 112 (1986) 1263–1291.

    Google Scholar 

  48. M. Pastor, O.C. Zienkiewicz and A.H.C. Chan, Generalized plasticity and the modelling of soil behaviour.Int. J. Numer. Anal. Meth. Geomech. 14 (1990) 151–190.

    Article  MATH  Google Scholar 

  49. O.C. Zienkiewicz and Z. Mroz, Generalized plasticity formulation and applications to geomechanics. In: C.S. Desai and R.H. Gallagher (eds.),Mechanics of Engineering Materials. Chichester: Wiley (1984) pp. 655–679.

    Google Scholar 

  50. E. Papamichos and I. Vardoulakis, Shear band formation in sand according to non-coaxial plasticity model.Géotechnique 4 (1995) 649–661.

    Google Scholar 

  51. D. Kolymbas, An outline of hypoplasticity.Arch. Appl. Mech. 61 (1991) 143–151.

    MATH  Google Scholar 

  52. C. Tamagnini, G. Viggiani and R. Chambon, A review of two different approaches to hypoplasticity. In: D. Kolymbas (ed.),Constitutive Modelling of Granular Materials. Berlin: Springer (2000) pp. 107–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Tamagnin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamagnin, C., Calvetti, F. & Viggiani, G. An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils. J Eng Math 52, 265–291 (2005). https://doi.org/10.1007/BF02694041

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02694041

Key words

Navigation