Skip to main content
Log in

Generalised homogenisation procedures for granular materials

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Engineering materials are generally non-homogeneous, yet standard continuum descriptions of such materials are admissible, provided that the size of the non-homogeneities is much smaller than the characteristic length of the deformation pattern. If this is not the case, either the individual non-homogeneities have to be described explicitly or the range of applicability of the continuum concept is extended by including additional variables or degrees of freedom. In the paper the discrete nature of granular materials is modelled in the simplest possible way by means of finite-difference equations. The difference equations may be homogenised in two ways: the simplest approach is to replace the finite differences by the corresponding Taylor expansions. This leads to a Cosserat continuum theory. A more sophisticated strategy is to homogenise the equations by means of a discrete Fourier transformation. The result is a Kunin-type non-local theory. In the following these theories are analysed by considering a model consisting of independent periodic ID chains of solid spheres connected by shear translational and rotational springs. It is found that the Cosserat theory offers a healthy balance between accuracy and simplicity. Kunin’s integral homogenisation theory leads to a non-local Cosserat continuum description that yields an exact solution, but does not offer any real simplification in the solution of the model equations as compared to the original discrete system. The rotational degree of freedom affects the phenomenology of wave propagation considerably. When the rotation is suppressed, only one type of wave,viz. a shear wave, exists. When the restriction on particle rotation is relaxed, the velocity of this wave decreases and another, high velocity wave arises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cosserat and F. Cosserat,Théorie des Corps Déformables. Paris: A. Herrmann et Fils (1909) 226 pp.

    Google Scholar 

  2. W. Nowacki, The linear theory of micropolar elasticity. In: W. Nowacki and W. Olszak (eds.),Micropolar Elasticity. Wien, New York: Springer-Verlag (1974) pp. 1–43.

    Google Scholar 

  3. R.D. Mindlin, Micro-structure in linear elasticity.Arch. Ration. Mech. Anal. 16 (1964) 51–78.

    Article  MATH  MathSciNet  Google Scholar 

  4. A.V. Dyskin, R.L. Salganik and K.B. Ustinov, Multi-scale geomechanical modelling. In: T. Szwedziki, G.R. Baird and T.N. Little (eds.),Proceedings of Western Australian Conference of Mining Geomechanics. Kalgoorlie, Western Australia: Curtin University, WASM (1992) pp. 235–246.

    Google Scholar 

  5. L.N. Germanivich and A.V. Dyskin, Virial expansions in problems of effective characteristics. Part I. General concepts.J. Mech. Compos. Mater. 30(2) (1994) 222–237.

    Google Scholar 

  6. H.-B. Mühlhaus, A. Dyskin, E. Pasternak and D. Adhikary, Non-standard continuum theories in geomechanics: theory, experiments and analysis. In: R.C. Picu and E. Kremple (eds.),Proceedings of the Fourth International Conference on Constitutive Laws for Engineering Materials. Rensselaer Polytechnic Institute: Troy, New York (1999) pp. 321–324.

    Google Scholar 

  7. R.D. Mindlin and H.F. Tiersten, Effects of couple-stresses in linear elasticity.Arch. Ration. Mech. Anal. 11 (1962) 415–448.

    Article  MATH  MathSciNet  Google Scholar 

  8. A.C. Eringen, Linear theory of micropolar elasticity.J. Math. Mech. 15 (1966) 909–923.

    MATH  MathSciNet  Google Scholar 

  9. A.C. Eringen and C.B. Kafadar, Polar field theories. In: A.C. Eringen (ed.),Continuum Physics, Volume IV, Part I. New York: Academic Press (1976) pp. 4–73.

    Google Scholar 

  10. P. Germain, La méthode des puissances virtuelles en mécanique des milieux continues. Première partie. Théorie du second gradient.J. Mécanique 12 (1973) 235–274.

    MATH  MathSciNet  Google Scholar 

  11. P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure.SIAM J. Appl. Math. 25 (1973) 556–575.

    Article  MATH  MathSciNet  Google Scholar 

  12. G.A. Maugin, The method of virtual power in continuum mechanics: application to coupled fields.Acta Mech. 35 (1980) 1–70.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. I.A. Kunin,Elastic Media with Microstructure 1. One-dimensional Models. Berlin, Heidelberg, New York: Springer-Verlag (1982) 291 pp.

    Google Scholar 

  14. E. Kröner, The problem of non-locality in the mechanics of solids: review of the present status. In: J.A. Simmons, R. de Wit and R. Bullough (eds.),Fundamental Aspects of Dislocation Theory. National Bureau of Standards Special Publication 317, Vol. II. Washington: National Bureau of Standards (1970) pp. 729–736.

    Google Scholar 

  15. E. Kröner and B.K. Datta, Non-local theory of elasticity for a finite inhomogeneous medium — A derivation from lattice theory. In: J.A. Simmons, R. de Wit and R. Bullough (eds.),Fundamental Aspects of Dislocation Theory, National Bureau of Standards Special Publication 317, Vol. II. Washington: National Bureau of Standards (1970) pp. 737–746.

    Google Scholar 

  16. I.A. Kunin and A.M. Waisman, On problems of the non-local theory of elasticity. In: J.A. Simmons, R. de Wit and R. Bullough (eds.),Fundamental Aspects of Dislocation Theory, National Bureau of Standards Special Publication 317, Vol. II. Washington: National Bureau of Standards (1970) pp. 747–759.

    Google Scholar 

  17. I.A. Kunin,Elastic Media with Microstructure II. Three-dimensional Models. Berlin, Heidelberg, New York: Springer-Verlag (1983) 272 pp.

    MATH  Google Scholar 

  18. A.C. Eringen, Non-local continuum description of lattice dynamics and application. In: J. Chandra and R.P. Srivastav (eds.),Constitutive Models of Deformation. Philadelphia: SIAM (1987) pp. 59–80.

    Google Scholar 

  19. A.C. Eringen, Non-local polar field theories. In: A.C. Eringen (ed.),Continuum Physics, Volume IV, Part III. New York: Academic Press (1976) pp. 205–264.

    Google Scholar 

  20. A.C. Eringen, Non-local continuum mechanics and some application. In: A.O. Barut (ed.),Non-linear Equations in Physics and Mathematics. Dordrecht: D. Reidel Publishing Company (1978) pp. 271–318.

    Google Scholar 

  21. R. de Borst, A. Benallal and R.H.J. Peerlings, On gradient-enhanced damage theories. In: N.A. Fleck and A.C.F. Cocks (eds.),IUTAM Symposium on Mechanics of Granular and Porous Materials. Dordrecht: Kluwer Academic Publishers (1997) pp. 215–226.

    Google Scholar 

  22. G. Pijaudier-Cabot and Z.P. Bazant, Non-local damage theory.J. Engng. Mech. 113 (1987) 1512–1533.

    Google Scholar 

  23. Z.P. Bazant and G. Pijaudier-Cabot, Non-local continuum damage, localization instability and convergence.J. Appl. Mech. 55 (1988) 287–293.

    MATH  Google Scholar 

  24. G. Pijaudier-Cabot, Non-local damage. In: H.-B. Mühlhaus (ed.),Continuum Models for Materials with Microstructure (Chapter 4). Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons (1995) pp. 105–143.

    Google Scholar 

  25. H.-B. Mühlhaus, Continuum models for layered and blocky rock. In: J.A. Hudson (ed.),Comprehensive Rock Engineering: Principles, Practice & Projects, Invited Chapter for Vol. II: Analysis and Design Methods. Oxford, New York: Pergamon Press (1993) pp. 209–230.

    Google Scholar 

  26. N.V. Zvolinskii and K.N. Shkhinek, Continual model of laminar elastic medium.Mech. Solids 19(1) (1984) 1–9.

    Google Scholar 

  27. D.P Adhikary and A.V. Dyskin, A Cosserat continuum model for layered materials.Comp. Geotechn. 20 (1997) 15–45.

    Article  Google Scholar 

  28. H.-B. Mühlhaus, A relative gradient model for laminated materials. In: H.-B. Mühlhaus (ed.),Continuum Models for Materials with Microstructure, (Chapter 13). Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons (1995) pp. 451–482.

    Google Scholar 

  29. H.-B. Mühlhaus and P. Hornby, A relative gradient theory for layered materials.J. Phys. IV France 8 (1998) 269–276.

    Article  Google Scholar 

  30. H.-B. Mühlhaus and P. Hornby, A beam theory gradient continua. In: R. de Borst and E. van der Giessen (eds.),Material Instabilities in Solids (Chapter 32). Chichester, New York: John Wiley & Sons (1998) pp. 521–532.

    Google Scholar 

  31. J. Sulem and H.-B. Mühlhaus, A continuum model for periodic two-dimensional block structures.Mech. Cohesive-Frictional Mater. 2 (1997) 31–46.

    Article  Google Scholar 

  32. H.-B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials.Géotechnique 37 (1987) 271–283.

    Article  Google Scholar 

  33. H.-B. Mühlhaus, R. de Borst and E.C. Aifantis, Constitutive models and numerical analyses for inelastic materials with microstructure. In: G. Beer, J.R. Booker and J. Carter (eds.),Computing Methods and Advances in Geomechanics. Rotterdam: Balkema (1991) pp. 377–385.

    Google Scholar 

  34. C.S. Chang and L. Ma, Elastic material constants for isotropic granular solids with particle rotation.Int. J. Solids Struct. 29 (1992) 1001–1018.

    Article  MATH  Google Scholar 

  35. H.-B. Mühlhaus and F. Oka, Dispersion and wave propagation in discrete and continuous models for granular materials.Int. J. Solids Struct. 33 (1996) 2841–2858.

    Article  MATH  Google Scholar 

  36. H.-B. Mühlhaus and P. Hornby, On the reality of antisymmetric stresses in fast granular flows. In: N.A. Fleck and A.C.F. Cocks (eds.),IUTAM Symposium on Mechanics of Granular and Porous Materials. Dordrecht: Kluwer Academic Publishers (1997) pp. 299–311.

    Google Scholar 

  37. G.N. Wells and L.J. Sluys, Partition-of-unity for fracture of brittle materials. In: H.-B. Mühlhaus, A.V. Dyskin and E. Pasternak (eds.),Bifurcation and Localization in Geomechanics. Lisse: Swets & Zeitlinger (2001) pp. 169–176.

    Google Scholar 

  38. R. Hill, Elastic properties of reinforced solids: some theoretical principles.J. Mech. Phys. Solids 11 (1963) 357–372.

    Article  MATH  ADS  Google Scholar 

  39. T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions.Acta Metal. 21 (1973) 571–574.

    Article  Google Scholar 

  40. R.M. Christensen,Mechanics of Composite Materials. New York: John Wiley & Sons (1979) 348 pp.

    Google Scholar 

  41. Z. Hashin, The differential scheme and its application to cracked materials.J. Mech. Phys. Solids 36 (1988) 719–734.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. M. Kachanov, Effective elastic properties of cracked solids: critical review of some basic concepts.Appl. Mech. Rev. 45(8) (1992) 304–335.

    Article  Google Scholar 

  43. S. Nemat-Nasser and H. Horii,Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam, London, New York, Tokyo: North-Holland (1993) 687 pp.

    MATH  Google Scholar 

  44. D. Krajcinovic,Damage Mechanics. Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo: Elsevier (1996) 761 pp.

    Google Scholar 

  45. B. Cambou, Micromechanical approach in granular materials. In: B. Cambou (ed.),Behaviour of Granular Materials, CISM Courses and Lectures, No 385. Wien, New York: Springer (1998) pp. 171–216.

    Google Scholar 

  46. G.N. Savin and L.P. Khoroshun, The problem of elastic constants of stoichastically reinforced materials.Mekhanika sploshnoy sredy i rodstvennye problemy analiza [Mechanics of continuous media and related problems of analysis]. Moscow: Nauka Press (1972) pp. 437–444 (in Russian).

    Google Scholar 

  47. L.P. Khoroshun, Methods of theory of random functions in problems of macroscopic properties of microinhomogeneous media.Soviet Appl. Mech. 14 (1978) 113–124.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. Duffy and R.D. Mindlin, Stress-strain relation and vibrations of granular medium.J. Appl. Mech. 24 (1957) 585–593.

    MathSciNet  Google Scholar 

  49. H. Deresiewicz, Stress-strain relations for a simple model of a granular medium.J. Appl. Mech. 25 (1958) 402–406.

    MATH  Google Scholar 

  50. S.A. Meguid and A.L. Kalamkarov, Asymptotic homogenization of elastic materials with a regular structure.Int. J. Solids Struct. 31 (1994) 303–316.

    Article  MATH  Google Scholar 

  51. G.A. Vanin,Micromechanics of Composite Materials. Kiev: Naukova Dumka (1985) 302 pp (in Russian).

    Google Scholar 

  52. G.A. Maugin,Non-linear Waves in Elastic Crystals. Oxford: Oxford University Press (1999) 314 pp.

    Google Scholar 

  53. A.S.J. Suiker, R. de Borst and C.S. Chang, Micro-mechanically based higher-order continuum models for granular materials. In: D. Kolymbas (ed.),Constitutive Modelling of Granular Materials. Berlin: Springer (2000) pp. 249–274.

    Google Scholar 

  54. A.S.J. Suiker, R. de Borst and C.S. Chang, Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory.Acta Mech. 149 (2001) 161–180.

    Article  MATH  Google Scholar 

  55. A.S.J. Suiker, R. de Borst and C.S. Chang, Micro-mechanical modelling of granular material. Part 2: Plane wave propagation in finite media.Acta Mech. 149 (2001) 181–200.

    Article  Google Scholar 

  56. M. Satake, Three-dimensional discrete mechanics of granular materials. In: N.A. Fleck and A.C.F. Cocks (eds.),IUTAM Symposium on Mechanics of Granular and Porous Materials. Dordrecht: Kluwer Academic Publishers (1997) pp. 193–202.

    Google Scholar 

  57. U. Tüzün and D.M. Heyes, Distinct element simulations and dynamic microstructural imaging of slow shearing granular flows. In: N.A. Fleck and A.C.F. Cocks (eds.),IUTAM Symposium on Mechanics of Granular and Porous Materials. Dordrecht: Kluwer Academic Publishers (1997) pp. 263–274.

    Google Scholar 

  58. C. Thornton, Microscopic approach contributions to constitutive modelling. In: D. Kolymbas (ed.),Constitutive Modelling of Granular Materials. Berlin: Springer (2000) pp. 193–208.

    Google Scholar 

  59. H.-B. Mühlhaus, L. Moresi and H. Sakaguchi, Discrete and continuum modelling of granular materials. In: D. Kolymbas (ed.),Constitutive Modelling of Granular Materials. Berlin: Springer (2000) pp. 209–224.

    Google Scholar 

  60. G. Gudehus, A comprehensive constitutive equation for granular materials.Soils and Foundations 36 (1996) 1–12.

    Google Scholar 

  61. P.J. Digby, The effective elastic moduli of porous granular rocks.J. Appl. Mech. 16 (1981) 803–808.

    Article  Google Scholar 

  62. K. Walton, The effective elastic modulus of a random packing of spheres.J. Mech. Phys. Solids 35 (1987) 213–226.

    Article  MATH  ADS  Google Scholar 

  63. R.J. Bathurst and L. Rothenberg, Micromechanical aspects of isotropic granular assemblies with linear contact interactions.J. Appl. Mech. 55 (1988) 17–23.

    Google Scholar 

  64. C.S. Chang, Micromechanical modelling of constitutive relations for granular material. In: M. Satake and J.T. Jenkins (eds.),Micromechanics of Granular Materials. Amsterdam: Elsevier Science Publishers B.V. (1988) pp. 271–279.

    Google Scholar 

  65. J.T. Jenkins, Volume change in small strain axisymmetric deformations of a granular material. In: M. Satake and J.T. Jenkins (eds.),Micromechanics of Granular Materials. Amsterdam: Elsevier Science Publishers B.V. (1988) pp. 245–252.

    Google Scholar 

  66. B. Cambou, F. Dedecker and M. Chaze, Relevant local variables for the change of scale in granular materials. In: D. Kolymbas (ed.),Constitutive Modelling of Granular Materials. Berlin: Springer (2000) pp. 275–290.

    Google Scholar 

  67. N.A. Fleck and A.C.F. Cocks (eds.),IUTAM Symposium on Mechanics of Granular and Porous Materials. Dordrecht: Kluwer Academic Publishers (1997) 450 pp.

    Google Scholar 

  68. E. Pasternak and H.-B. Mühlhaus, Non-classical continua for modelling of granulate materials. In: J.P. Denier and E.O. Tuck (eds.),The 2001 ANZ1AM Applied Mathematics Conference Abstracts. Barossa Valley, South Australia: University of Adelaide (2001) p. 64.

    Google Scholar 

  69. E. Pasternak and H.-B. Mühlhaus, Cosserat continuum modelling of granulate materials. In: S. Valliappan and N. Khalili (eds.),Computational Mechanics — New Frontiers for New Millennium. Amsterdam: Elsevier Science (2001) pp. 1189–1194.

    Google Scholar 

  70. E. Pasternak and H.-B. Mühlhaus, Large deformation Cosserat continuum modelling of granulate materials. In: L. Zhang, L. Tong and J. Gal (eds.),Applied Mechanics. Progress and Application. ACAM 2002. The Third Australasian Congress on Applied Mechanics New Jersey, London, Singapore: World Scientific (2002) pp. 389–396.

    Google Scholar 

  71. E. Pasternak and H.-B. Mühlhaus, Cosserat and non-local continuum models for problems of wave propagation in fractured materials. In: X.L. Zhao and R.H. Grzebieta (eds.),Structural Failure and Plasticity (IMPLAST2000). Amsterdam: Pergamon (2000) pp. 741–746.

    Google Scholar 

  72. E. Pasternak and H.-B. Mühlhaus, A non-local Cosserat model of heterogeneous materials: 1D structures. In: A.V. Dyskin, X. Hu and E. Sahouryeh (eds.),Structural Integrity and Fracture. Lisse: Swets & Zeitlinger (2002) pp. 107–114.

    Google Scholar 

  73. K.F. Graff,Wave Motion in Elastic Solids. New York: Dover Publications (1975) 649 pp.

    MATH  Google Scholar 

  74. J.-P. Kahane,Some Random Series of Functions, 2nd edition. Cambridge: Cambridge University Press (1985) 305 pp.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasternak, E., Mühlhaus, H.B. Generalised homogenisation procedures for granular materials. J Eng Math 52, 199–229 (2005). https://doi.org/10.1007/BF02694038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02694038

Key words

Navigation