Skip to main content
Log in

Real time FT-IR for both liquid and radiation curable powder systems

Echtzeit FT-IR für flüssige bzw. pulverige struhlungs ernetzbaren Systeme

FT-IR en temps réel à la fois pour systèmes en phase liquide ou en poudre et réticulable par radiation

  • Focus
  • Published:
Surface Coatings International

Summaries

A versatile Real Time Fourier Transform Infra Red experimental arrangement that enables the monitoring of the rapid photocuring of both liquid and powder UV curable coatings is described. The sample compartment is a Large Angle Reflectance Infrared cell for samples held horizontally. The cell has a heated stage as well as a gas purge facility. The spectrophotometer can measure 20 scons/second at 4 cm−1 resolution. The entire mid-infra red region is analysed, allowing multiple peaks to be monitored simultaneously. This multiple peak analysis is coupled, where necessary, with a Gaussian curve fitting and deconvolution procedure to distinguish between overlapping peaks. Typical experiments at elevated temperature and various inert conditions, nitrogen, dry and humid air, are described. Free radical and cationic photocuring reactions under different conditions are examined to demonstrate the versatility of the instrument.

Zusammenfassung

Eine vielseitige experimentelle Ausrustung für das Kontrollieren durch Echzeit-RT-FT-Infrarotspektroskopie der schnelle Photoaushärtung von flüssigen bzw. Pulverfrom UV-hartbaren Beschichtungsstoffen wird beschrieben. Die Proben stehen waagerecht in einer Breitewinkelreflexionsinfrarotzelle. Die Zelle lässt sich bis 500°C erhitzen und hat eine Gasreinigungsmoglichkeit. Das Spektrophotometer kann 20 Scans sec−1 bei einer Trennung von 4cm−1. Es wird die ganze Mittelinfrarotzone analysiert, um die Mehrgipfel gleichzeitig zu Kontrollieren. Diese Mehrgipfelanalyse wird, wenn nötig, mit einem Grausschkurveengpassungs-und Entfaltungsverfahren angeknuppelt um die überandergreiffenden Gipfel zu unterscheiden. Es wird konventionelle Versuche an erhoren Temperaturen und bei verschiedenen Bedingungen, bzw. Stickstoff, Luft trocken oder feucht, beschriebt. Es wird freiradikale oder kationische photochemische Vernetzungsreaktionen bei unterscheidlichen Bedingungen untersucht, um die Vielseitigkeit dieses Instruments zu ziegen.

Résumé

On décrit un appareil expérimental faisant appel a la FT-IR en temps réel qui pemet le contrôle de la photoréticulation rapide des revêtements réticulables par radiation et en phase liquide et en poudre. Les échantillons sont retenues dans une ‘Large Angle Reflectance Infrared’ cellule horizontalement. La cellule comprend une porte-objet, chauffable jusqu’à 500°C, ainsi qu’un purgeur à gaz. Le spéctrophotomètre est capable d’effectuer 20 scans par seconde à une résolution de 4cm−1. On analyse toute la région centrale de l’infrarouge, ce qui permet le controle simultanément des multisommets. Cette analyse est liée, le cas echéant, à une procédure de contreypage des courbes de Gauss et de déconvolution afin de distinguer entre les courbes qui se recouvrent en partie. On décrit les expériences conventionnelles aux températures élevées et sous de diverses conditions inertes, telles que azote, air sec ou humide. Afin de démontrer la polyvalence de l’appareil, on examine, sous de différentes conditions, les réactions de réticulation par radiation et par des radicaux libres ou cationiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabek JF, in ‘Radiation Curing In Polymer Science and Technology’ Ed. J P Fouassier and J F Rabek, Elsevier Applied Science,1, 7, 1993.

  2. Nelson EW and Scranton AB,ACS PMSE Conf. Proceed. Anaheim, California,72, 413, 1995.

    CAS  Google Scholar 

  3. Anseth KS, Walker TA and Bowman CN, ACS Symp. Ser.,598, 166, 1995.

    Article  CAS  Google Scholar 

  4. Crofcheck CL, Nelson EW, Jacobs JL and Scranton AB,J. Polym. Sci Part. A, Polym. Chem.,33, 1735–1744, 1995.

    Article  CAS  Google Scholar 

  5. Nelson EW, Carter TP and Scranton AB,Macromolecules,27, 1013, 1994.

    Article  CAS  Google Scholar 

  6. Jager WF, Volkers AA and Neckers DC,Macromolecules,28, 8153–8158, 1995.

    Article  CAS  Google Scholar 

  7. Ottersbach P, Lennarz K and Bargon J,Makromol. Chem. Phys. 195, 3929–3935, 1994.

    Article  CAS  Google Scholar 

  8. Bressers HJ and Kloosterboer JG, Polym. Bull. 2, 201, 1980.

    Article  CAS  Google Scholar 

  9. Davidson RS, Tranter KS and Wilkinson S, in Radiation curing of Polymers II Ed. D R Randell, RSC Special Publication,64, 400, 1991.

  10. Decker C and Moussa K,Makromol. Chem.,189, 2381, 1988.

    Article  CAS  Google Scholar 

  11. Decker C and Moussa K,Macromolecules,22, 4455, 1989.

    Article  CAS  Google Scholar 

  12. Bosch P, del Monte F, Mateo JL and Davidson RS,J. Photochem. Photobiol. A: Chem.,73, 197–204, 1993.

    Article  CAS  Google Scholar 

  13. Allen NS, Hardy SF, Jacobine AF, Glass DM, Yang B, Wolf D, Catalina F, Navaratnam S and Parsons BJ,J. Polym. Sci. 42, 1169–1178, 1991.

    CAS  Google Scholar 

  14. Yang DB,J. Polym. Sci. Part A. Polym. Chem.,31, 199–208, 1993.

    Article  CAS  Google Scholar 

  15. Dietz JE, Elliott BJ and Peppas NA,Macromolecules,28, (15), 5163, 1995.

    Article  CAS  Google Scholar 

  16. Mehnert R and Scherzer T,Proc. Radtech 98, Chicago, 746, 1998.

  17. Holman R, Arsu N, Cockburn E and Whiting R,Conf. Papers ‘Aspects of Photoinitiation’ hosted by PRA, Egham, England, Paper 15, 245, 1993.

  18. Finter J, Frischinger I, Haug T and Morton R,Proc. 4th Nurnberg Congress hosted by PRA, Germany, Paper 38, 1997.

  19. Decker C and Decker D, Polymer,38, (9), 2229, 1997.

    Article  CAS  Google Scholar 

  20. Morgan CR, Magnotta F and Ketley AD,J. Polym. Sci. Polym. Chem. Ed.,156, 627, 1977.

    Article  Google Scholar 

  21. Pappas SP, in ‘Photopolymerisation and Photoimaging Science and Technology’, Ed. N S Allen, Chapter 2, 55, 1989.

  22. Crivello JV and Bratlavsky SA,J. Polym. Sci. Part. A, Polym. Chem.,32, 2755–2763, 1994.

    Article  CAS  Google Scholar 

  23. Crivello JV and Bratlavsky SA,J. Polym. Sci. Part. A, Polym. Chem.,32, 2919–2930, 1994.

    Article  CAS  Google Scholar 

  24. Tsunuoka M, Shigeru Y and Ito K,Proc. Radtech 1996, Nashville,1, 393, 1996.

    Google Scholar 

  25. Armstrong C and Herlihy S, Conf. Papers ‘Aspects of Photoinitiation’ hosted by PRA, Egham, England, Paper 1, 1, 1993.

  26. Skinner D, Conf. Papers ‘Aspects of Photoinitiation’ hosted by PRA, Egham, England Paper 14, 231, 1993.

  27. Doughherty J, Vara FJ and Wolf PK;Proc. Radtech 1996, Nashville,1, 80, 1996.

    Google Scholar 

  28. Udding S, Witte F and de Jong S,Product Finishing, April 1997, pp26 & 30, 1997.

  29. For further details in RT-FTIR experiments with inerting see articles by J F G A Jansen, A A Dias, H Hartwig and R A J Jansen in these proceedings.

  30. The UV light sources used were the Macam UV cure flexicure lamp fitted with a 400W medium pressure Hg halide lamp. This system has a fixed power output and a built in shutter. An Oriel lamp system with variable power supply that controls the Hg and Hg/Xe lamp. The UV light radiometer used was a Solascope light meter that gives an emission spectrum of the lamp Solatell (4D Controls Ltd), Cornwall, United Kingdom.

  31. Crivello JV and Yang B,J. Polym. Sci. Polym. Chem. Ed. 33, 8, 1381–1389, 1995.

    Article  CAS  Google Scholar 

  32. Sasaki H and Kuruyama A,J. Macromol. Sci. Pure Appl. Chem A32, (10), 1699–1707, 1995.

    CAS  Google Scholar 

  33. Crivello JV and Varlemann U,J. Polym. Sci. Polym. Chem. Ed.,33, 14, 2473, 1995.

    Article  CAS  Google Scholar 

  34. The LARI cell is available from AABSPEC International, Dublin, Ireland.

  35. Tryson GR and Schulz AR,J. Polym. Sci.: Polym. Phys. Ed. 17, 2059, 1979.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, A.A., Hartwig, H. & Jansen, J.F.G.A. Real time FT-IR for both liquid and radiation curable powder systems. Surface Coatings International 83, 382–388 (2000). https://doi.org/10.1007/BF02692752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02692752

Keywords

Navigation