, Volume 25, Issue 6, pp 1219–1230 | Cite as

An estuarine benthic index of biotic integrity for the Mid-Atlantic region of the United States. I. Classification of assemblages and habitat definition

  • Roberto J. Llansó
  • Lisa C. Scott
  • Daniel M. Dauer
  • Jeffrey L. Hyland
  • David E. Russell


An objective of the Mid-Atlantic Integrated Assessment Program (MAIA) of the U.S. Environmental Protection Agency is to develop an index for assessing benthic community condition in estuaries of the mid-Atlantic region of the United States (Delaware Bay through Pamlico Sound). To develop such an index, natural unimpaired communities must first be identified and variability related to natural factors accounted for. This study focused on these two objectives; Lnansó et al. (2002) describe the index. Using existing data sets from multiple years, classification analyses of species abundance and discriminant analysis were employed to identify major habitat types in the MAIA region and evaluate the physical characteristics that structure benthic infaunal assemblages. Sampling was restricted to soft bottoms and to the index development period, July through early October. The analyses revealed salinity and sediment composition as major factors structuring infaunal assemblages in mid-Atlantic estuaries. Geographical location was a secondary factor. Nine habitat classes were distinguished as a combination of 6 salinity classes, 2 sediment types, and the separation of North Carolina and Delaware-Chesapeake Bay polyhaline sites. The effect of sediment types on faunal assemblages was restricted to polyhaline sites, which were separated into two sediment groups above and below 90% sand content. Assemblages corresponding to each of these 9 habitats were identified in the context of widely recognized patterns of dominant taxa. Differences between North Carolina and Delaware-Chesapeake Bay polyhaline assemblages were attributed to the relative contributions of species and not to differences in species composition. No zoogeographic discontinuities could be identified. Our results reinforce the findings of recent studies which suggest that, with respect to estuarine benthic assemblages, the boundary between the Virginian and the Carolinian Provinces be moved to a new location south of Pamlico Sound.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, D. A., J. S. O’Connor, andS. B. Weisberg. 1998. Sediment quality of the NY/NJ Harbor system. Final report. An investigation under the Regional Environmental Monitoring and Assessment Program (REMAP), EPA/902/R-98/001. U.S. Environmental Protection Agency—Region 2, Division of Environmental Science and Assessment, Edison, New Jersey.Google Scholar
  2. American Society for Testing Materials. 1993. Guide for conducting 10-day static sediment toxicity tests with marine and estuarine infaunal amphipods. ASTM E-1367-92. American Society for Testing Materials, Philadelphia, Pennsylvania.Google Scholar
  3. Boesch, D. F. 1977a. Application of numerical classification in ecological investigations of water pollution. Virginia Institute of Marine Science Special Scientific Report No. 77. Virginia Institute of Marine Science, Gloucester Point, Virginia.Google Scholar
  4. Boesch, D. F. 1977b. A new look at the zonation of benthos along the estuarine gradient, p. 245–266.In B. C. Coull (ed.), Ecology of Marine Benthos. University of South Carolina Press, Columbia, South Carolina.Google Scholar
  5. Bradley, M. P. andR. B. Landy. 2000. The mid-Atlantic Integrated Assessment (MAIA).Environmental Monitoring and Assessment 63:1–13.CrossRefGoogle Scholar
  6. Calder, D. R., B. B. Boothe, Jr., andM. S. Maclin. 1977. A preliminary report on the estuarine macrobenthos of the Edisto and Santee River Systems, South Carolina. South Carolina Marine Resources Center Technical Report No. 22. South Carolina Wildlife and Marine Resources Department. Charleston, South Carolina.Google Scholar
  7. Chaillou, J. C., S. B. Weisberg, F. W. Kutz, T. E. DeMoss, L. Mangiaracina, R. Magnien, R. Eskin, J. Maxted, K. Price, andJ. K. Summers. 1996. Assessment of the ecological condition of the Delaware and Maryland coastal bays. EPA/620/R-96/004. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.Google Scholar
  8. Chester, A. J., R. L. Ferguson, andG. W. Thayer. 1983. Environmental gradients and benthic macroinvertebrate distributions in a shallow North Carolina estuary.Bulletin of Marine Science 33:282–295.Google Scholar
  9. Cutler, E. B. 1975. Zoogeographical barrier on the continental slope off Cape Lookout, North Carolina.Deep-Sea Research 22: 893–901.Google Scholar
  10. Dauer, D. M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure.Marine Pollution Bulletin 26:249–257.CrossRefGoogle Scholar
  11. Dauer, D. M., M. F. Lane, H. G. Marshall, andK. E. Carpenter. 1998. Status and trends in water quality and living resources in the Virginia Chesapeake Bay: 1985–1997. Prepared for the Virginia Department of Environmental Quality, Richmond, Virginia. Old Dominion University, Norfolk, Virginia.Google Scholar
  12. Dauer, D. M. and R. J. Llansó. In press. Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay.Environmental Monitoring and Assessment.Google Scholar
  13. Diaz, R. J. andR. Rosenberg 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna.Oceanography and Marine Biology annual Review 33:245–303.Google Scholar
  14. Diaz, R. J. andL. C. Schaffner. 1990. The functional role of estuarine benthos, p. 25–56.In M. Haire and E. C. Krome (eds.), Perspectives on the Chesapeake Bay, 1990, Advances in Estuarine Sciences. Chesapeake Bay Program Report No. CBP/TRS41/90. Chesapeake Research Consortium, Gloucester Point, Virginia.Google Scholar
  15. Dörjes, J. andJ. D. Howard. 1975. Estuaries of the Georgia Coast, U.S.A.: Sedimentology and biology. IV. Fluvial-marine transition indicators in an estuarine environment, Ogeechee River-Ossabaw Sound.Senckenbergiana Maritima 7:137–179.Google Scholar
  16. Engle, V. D. andJ. K. Summers. 1999a. Refinement, validation, and application of a benthic condition index for Northern Gulf of Mexico estuaries.Estuaries 22:624–635.CrossRefGoogle Scholar
  17. Engle, V. D. andJ. K. Summers. 1999b. Latitudinal gradients in benthic community structure in western Atlantic estuaries.Journal of Biogeography 26:1007–1023.CrossRefGoogle Scholar
  18. Green, R. H. andG. L. Vascotto. 1978. A method for analysis of environmental factors controlling patterns of species composition in aquatic communities.Water Research 12:583–590.CrossRefGoogle Scholar
  19. Hartwell, S. I., J. Hameedi, andM. Harmon. 2001. Magnitude and extent of contaminated sediment and toxicity in Delaware Bay. NOAA Technical Memorandum NOS NCCOS CCMA 148. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, Maryland.Google Scholar
  20. Holland, A. F., A. T. Shaughnessy, andM. H. Hiegel. 1987. Long-term variation in mesohaline Chesapeake Bay macrobenthos: Spatial and temporal patterns.Estuaries 10:227–245.CrossRefGoogle Scholar
  21. Hyland, J. L., L. Balthis, C. T. Hackney, G. McRae, A. H. Ringwood, T. R. Snoots, R. F. Van Dolah, andT. L. Wade. 1998. Environmental quality of estuaries of the Carolinian Province: 1995. Annual statistical summary for the 1995 EMAP-Estuaries Demonstration Project in the Carolinian Province. NOAA Technical Memorandum NOS ORCA 123. National Oceanic and Atmospheric Administration, National Ocean Service, Office of Ocean Resources Conservation and Assessment, Silver Spring, Maryland.Google Scholar
  22. Hyland, J. L., W. L. Balthis, C. T. Hackney, andM. Posey. 2000. Sediment quality of North Carolina estuaries: An integrative assessment of sediment contamination, toxicity, and condition of benthic fauna.Journal of Aquatic Ecosystem Stress and Recovery 8:107–124.CrossRefGoogle Scholar
  23. Hyland, J. L., E. Baptiste, J. Campbell, J. Kennedy, R. Kropp, andS. Williams. 1991. Macroinfaunal communities of the Santa Maria Basin on the California outer continental shelf and slope.Marine Ecology Progress Series 70:147–161.CrossRefGoogle Scholar
  24. Liansó, R. J., D. M. Dauer, J. H. Vølstad, and L. C. Scott. In press. Application of the benthic index of biotic integrity to environmental monitoring in Chesapeake Bay.Environmental Monitoring and Assessment.Google Scholar
  25. Llansó, R. J., L. C. Scott, J. L. Hyland, D. M. Dauer, D. E. Russell, andF. W. Kutz. 2002. An estuarine benthic index of biotic integrity for the mid-Atlantic region of the United States. II. Index development.Estuaries 25:1231–1242.CrossRefGoogle Scholar
  26. Long, E. R., D. D. Macdonald, S. L. Smith, andF. D. Calder. 1995. Incidence of adverse environmental effects within ranges of chemical concentrations in marine and estuarine sediments.Environmental Management 19:81–97.CrossRefGoogle Scholar
  27. Maurer, D., L. Watling, P. Kinner, W. Leathem, andC. Wethe. 1978. Benthic invertebrate assemblages of Delaware Bay.Marine Biology 45:65–78.CrossRefGoogle Scholar
  28. McCloskey, L. R. 1970. The dynamics of the community associated with a marine scleractinean coral.Internationale Revue der Gesamten Hydrobiologie 55:13–81.CrossRefGoogle Scholar
  29. Mountford, N. K., A. F. Holland, andJ. A. Mihursky. 1977. Identification, and description of macrobenthic communities in the Calvert Cliffs region of the Chesapeake Bay.Chesapeake Science 18:360–369.CrossRefGoogle Scholar
  30. Paul, J. F., J. H. Gentile, K. J. Scott, S. C. Schmimmel, D. E. Campbell, andR. W. Latimer. 1999. EMAP-Virginian Province four-year assessment report (1990–93). EPA 600/R-99/004. U.S. Environmental Protection Agency, Atlantic Ecology Division, Narragansett, Rhode Island.Google Scholar
  31. Paul, J. F., K. J. Scott, D. E. Campbell, J. H. Gentile, C. S. Strobel, R. M. Valente, S. B. Weisberg, A. F. Holland, andJ. A. Ranasinghe. 2001. Developing and applying a benthic index of estuarine condition for the Virginian Biogeographic Province.Ecological Indicators 1:83–99.CrossRefGoogle Scholar
  32. Pearson, T. H. andR. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment.Oceanography and Marine Biology, Annual Review 16:229–311.Google Scholar
  33. Ranasinghe, J. A., L. C. Scott, andF. S. Kelley. 1999. Chesapeake Bay water quality monitoring program, long-term, benthic monitoring and assessment component. Level 1 Comprehensive report, July 1984–December 1998. Prepared for Maryland Department of Natural Resources, Tidewater Ecosystem Assessments. Versar, Inc., Columbia, Maryland.Google Scholar
  34. Ringwood, A. H., M. E. DeLorenzo, P. E. Ross, andA. F. Holland. 1997. Interpretation of Microtox solid-phase toxicity tests: The effects of sediment composition.Environmental Toxicology and Chemistry 16:1135–1140.CrossRefGoogle Scholar
  35. Ristich, S. S., M. Crandall, andJ. Fortier. 1977. Benthic and epibenthic macroinvertebrates of the Hudson River. I. Distribution, natural history and community structure.Estuarine and Coastal Science 5:255–266.CrossRefGoogle Scholar
  36. Smith, R. W., M. Bergen, S. B. Weisberg, D. Cadien, A. Dalkey, D. Montagne, J. K. Stull, andR. G. Velarde. 2001. Benthic response index for assessing infaunal communities on the Southern California mainland shelf.Ecological Applications 11: 1073–1987.CrossRefGoogle Scholar
  37. Strobel, C. J. 1998. Environmental Monitoring and Assessment Program, Mid-Atlantic Integrated Assessment, Estuaries Component. Field Operations and Safety Manual. U.S. Environmental Protection Agency, Atlantic Ecology Division, Narragansett, Rhode Island.Google Scholar
  38. Tenore, K. R. 1972. Macrobenthos of the Pamlico River estuary, North Carolina.Ecological Monographs 42:51–69.CrossRefGoogle Scholar
  39. Tourtellotte, G. H. andD. M. Dauer. 1983. Macrobenthic communities of the lower Chesapeake Bay. II. Lynnhaven Roads, Lynnhaven Bay, Broad Bay, and Linkhorn Bay.Internationale Revue der Gesamten Hydrobiologie 68:59–72.CrossRefGoogle Scholar
  40. Van Dolah, R. F., J. L. Hyland, A. F. Holland, J. S. Rosen, andT. R. Snoots. 1999. A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA.Marine Environmental Research 48:269–283.CrossRefGoogle Scholar
  41. Weisberg, S. B., J. A. Ranasinghe, D. M. Dauer, L. C. Schaffner, R. J. Diaz, andJ. B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for the Chesapeake Bay.Estuaries 20:149–158.CrossRefGoogle Scholar
  42. Williams, W. T. andJ. M. Lambert. 1961. Nodal analysis of associated populations.Nature 191:202.CrossRefGoogle Scholar
  43. Wilson, J. G. andD. W. Jeffrey. 1994. Benthic biological pollution indices in estuaries, p. 311–327.In J. M. Krammer (ed.), Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • Roberto J. Llansó
    • 1
  • Lisa C. Scott
    • 1
  • Daniel M. Dauer
    • 2
  • Jeffrey L. Hyland
    • 3
  • David E. Russell
    • 4
  1. 1.Versar, Inc.Columbia
  2. 2.Department of Biological SciencesOld Dominion UniversityNorfolk
  3. 3.National Ocean ServiceNational Oceanic and Atmospheric AdministrationCharleston
  4. 4.Environmental Science CenterU.S. Environmental Protection Agency, Region IIIFt. Meade

Personalised recommendations