, Volume 25, Issue 6, pp 1174–1183 | Cite as

Halophyte recruitment in a salt marsh restoration site



In restored salt marshes, seedling recruitment can be limited where large areas of soil are exposed and physical conditions are harsh. On a 0.7-ha excavated marsh plain, we studied recruitment as a function of abiotic (elevation) and biotic factors in 2 × 2 m plots planted with 0, 1, 3, or 6 species from the pool of 8 native halophytes. The random draws of 3-species and 6-species assemblages produced approximately equal numbers of plants per species for the experiment as a whole, yet only three species recruited> 10 seedlings per plot.Salicornia virginica andSalicornia bigelovii each produced> 15,000 seedlings in 1998, andSuaeda esteroa produced> 2,500 seedlings in 1999. For these 3 species, seedling recruitment increased with elevation in 1998, but this trend weakened in 1999, when species richness affected recruitment (fewer seedlings in more species-rich plots). Abiotic effects preceded biotic interactions in determining seedling recruitment patterns early in the development of the salt marsh. Effects of species richness appeared to be scale-dependent in that having all species present in the site likely enhanced overall recruitment (all species had 2 or more seedlings), while plantings of 6 species in a 2 × 2 m plot reduced seedling density.S. virginica was the only species that increased its presence and relative cover in the experimental site over the 4-yr study. Protocols for planting southern California salt marsh restoration sites could omit this species, but all others probably need to be introduced to restore diverse vegetation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adam, P. 1981. The vegetation of British salt marshes.New Phytologist 88:143–196.CrossRefGoogle Scholar
  2. Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, New York.Google Scholar
  3. Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes.Ecology 44:445–456.CrossRefGoogle Scholar
  4. Bakker, J. P. andY. DeVries. 1992. Germination and early establishment of lower salt-marsh species in grazed and mown salt-marsh.Journal of Vegetation Science 3:247–252.CrossRefGoogle Scholar
  5. Baldwin, A. H. andI. A. Mendelssohn. 1998. Response of two oligohaline marsh communities to lethal and nonlethal disturbances.Oecologia 116:543–555.CrossRefGoogle Scholar
  6. Beeftink, W. G. 1985. Population dynamics of annualSalicornia species in the tidal salt of the Oosterschelde, The Netherlands.Vegetatio 61:127–136.CrossRefGoogle Scholar
  7. Bendix, J. andC. R. Hupp. 2000. Hydrological and geomorphological impacts on riparian plant communities.Hydrological Processes 14:2977–2990.CrossRefGoogle Scholar
  8. Bertness, M. D. andR. Callaway. 1994. Positive interactions in communities.Trends in Ecology and Evolution 9:191–193.CrossRefGoogle Scholar
  9. Bertness, M. D. andS. M. Yeh. 1994. Cooperative and competitive interactions in the recruitment of marsh elders.Ecology 1994:2416–2429.CrossRefGoogle Scholar
  10. Brewer, J. S., J. M. Levine, andM. D. Bertness. 1997. Effects of biomass removal and elevation on species richness in a New England salt marsh.Oikos 80:333–341.CrossRefGoogle Scholar
  11. Craft, C., J. Reader, J. N. Sacco, andS. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alternifolia (Loisel) marshes.Ecological Applications 9:1405–1419.CrossRefGoogle Scholar
  12. Earle, J. C. andK. A. Kershaw. 1989. Vegetation patterns in James Bay coastal marshes. III. Salinity and elevation as factors influencing plant zonation.Canadian Journal of Botany 67:2967–2974.CrossRefGoogle Scholar
  13. Elton, C. S. 1958. The Ecology of Invasions by Animals and Plants. Methuen, London, U.K.Google Scholar
  14. Ewel, J. J., M. J. Mazzarino, andC. W. Berish. 1991. Tropical soil fertility changes under monocultures and successional communities of different structure.Ecological Applications 1:289–302.CrossRefGoogle Scholar
  15. Hacker, S. D. andM. D. Bertness. 1999. Experimental evidence for factors maintaining plant species diversity in a New England salt marsh.Ecology 80:2064–2073.Google Scholar
  16. Haltiner, J., J. B. Zedler, K. E. Boyer, G. D. Williams, andJ. C. Callaway. 1997. Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California (USA).Wetlands Ecology and Management 4:73–91.CrossRefGoogle Scholar
  17. Harley, C. D. G. andM. D. Bertness. 1996. Structural inter-dependence: An ecological consequence of morphological responses to crowding in marsh plants.Functional Ecology 10:654–661.CrossRefGoogle Scholar
  18. Hinde, H. P. 1954. The vertical distribution of salt marsh phanerogams in relation to tide levels.Ecological Monographs 24:209–225.CrossRefGoogle Scholar
  19. Hooper, D. U. andP. M. Vitousek. 1997. The effects of plant composition and diversity on ecosystem processes.Science 277:1302–1305.CrossRefGoogle Scholar
  20. Huiskes, A. H. L., B. P. Koutstaal, P. M. J. Herman, W. G. Beeftink, M. M. Markusse, andW. de Munck. 1995. Seed dispersal of halophytes in tidal salt marshes.Journal of Ecology 83:559–567.CrossRefGoogle Scholar
  21. Hutchings, M. J. andP. J. Russel. 1989. The seed regeneration dynamics of an emergent salt marsh.Journal of Ecology 77:615–637.CrossRefGoogle Scholar
  22. Ibarra-Obando, S. andM. Poumian-Tapia. 1992. The salt marsh vegetation of Punta Banda estuary, Baja California, Mexico, p. 201–211.In U. Seeliger (ed.), Coastal Plant Communities of Latin America. Academic Press, San Diego, California.Google Scholar
  23. Jefferies, R. L., A. J. Davy, andT. Rudmik. 1981. Population biology of the salt marsh annualSalicornia europea Agg.Journal of Ecology 69:17–31.CrossRefGoogle Scholar
  24. Keer, G. andJ. B. Zedler. 2002. Salt marsh canopy architecture differs with the number and composition of species.Ecological Applications 12:456–473.CrossRefGoogle Scholar
  25. Khan, M. A. andI. A. Ungar. 1984. Seed polymorphism and germination responses to salinity stress inAtriplex triangularis Willd.Botanical Gazette 145:487–494.CrossRefGoogle Scholar
  26. Kramer, C. Y. 1956. Extension of multiple range tests to group means with unequal number of replications.Biometrics 12:309–310.CrossRefGoogle Scholar
  27. Langis, R., M. Zalejko, andJ. B. Zedler. 1991. Nitrogen assessments in a constructed and a natural salt marsh of San Diego Bay.Ecological Applications 1:40–51.CrossRefGoogle Scholar
  28. Lertzman, K. P. 1995. Forest dynamics, differential mortality and variable recruitment probabilities.Journal of Vegetation Science 6:191–204.CrossRefGoogle Scholar
  29. Lindig-Cisneros R. andJ. B. Zedler. 2000. Restoring urban habitats: A comparative study.Ecological Restoration 18:184–192.Google Scholar
  30. Martens, S. N., D. D. Breshears, andC. W. Meyer. 2000. Spatial distribution of understory light along the grassland/forest continuum: Effects of cover, height, and spatial pattern of tree canopies.Ecological Modeling 126:79–93.CrossRefGoogle Scholar
  31. Miller, W. R. andF. E. Egler. 1950. Vegetation of the Wequetequock-Pawcatuck tidal-marshes, Connecticut.Ecological Monographs 20:143–172.CrossRefGoogle Scholar
  32. Naeem, S., J. H. M. Knops, D. Tilman, K. M. Howe, T. Kennedy, andS. Gale. 2000. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors.Oikos 91:97–108.CrossRefGoogle Scholar
  33. Naeem, S., K. Hakansson, J. H. Lawton, M. J. Crawley, andL. J. Thompson. 1996. Biodiversity and plant productivity in a model assemblage of plant species.Oikos 76:259–264.CrossRefGoogle Scholar
  34. Noe, G. B. andJ. B. Zedler. 2000. Differential effects of four abiotic factors on the germination of salt marsh annuals.American Journal of Botany 87:1679–1692.CrossRefGoogle Scholar
  35. Palmer, M. A., R. F. Ambrose, andN. L. Poff. 1997. Ecological theory and community restoration ecology.Restoration Ecology 5:291–300.CrossRefGoogle Scholar
  36. Rejmanek, M. 1989. Invasibility of plant communities, p. 369–388.In J. A. Drake, H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmanek, and M. Williamson (eds.), Biological Invasions: A Global Perspective. John Wiley and Sons, London, U.K.Google Scholar
  37. Sanchez, J. M., J. Izco, andM. Medrano. 1996. Relationships between vegetation zonation and altitude in a salt-marsh system in northwest Spain.Journal of Vegetation Science 7:605–702.CrossRefGoogle Scholar
  38. Sequeira, W. andH. L. Gholz. 1991. Canopy structure, light penetration and tree growth in a slash pine (Pinus elliotti) silvo-pastoril system at different stand configurations in Florida.Forest Chronicle 67:262–267.Google Scholar
  39. Skalova, H., F. Krahulec, H. J. During, V. Hadincova, S. Pechackova, andT. Herben. 1999. Grassland canopy composition and spatial heterogeneity in the light quality.Plant Ecology 143:129–139.CrossRefGoogle Scholar
  40. Sullivan, G. 2001. Establishing vegetation in restored and created coastal wetlands, p. 119–155.In J. Zedler (ed.), Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.Google Scholar
  41. Tessier, M., J. C. Gloaguen, andJ. C. Lefeuvre. 2000. Factors affecting the population dynamics ofSuaeda maritima at initial stages of development.Plant Ecology 147:193–203.CrossRefGoogle Scholar
  42. Tilman, D. 1997. Community invasibility, recruitment limitation, and grassland biodiversity.Ecology 78:81–92.Google Scholar
  43. Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, andE. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes.Science 277:1300–1302.CrossRefGoogle Scholar
  44. Tilman, D., D. Wedin, andJ. Knops. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems.Nature 379:718–720.CrossRefGoogle Scholar
  45. Torstensson, P. 1987. The demography of the annualSpargularia marina on a Baltic seashore meadow.Vegetatio 68:157–168.CrossRefGoogle Scholar
  46. Trenbath, B. R. 1974. Biomass productivity of mixtures.Advances in Agronomy 26:177–210.CrossRefGoogle Scholar
  47. Ungar, I. A. 1987. Population ecology of halophyte seeds.The Botanical Review 53:301–334.CrossRefGoogle Scholar
  48. Ungar, I. A. 1995. Seed germination and seed-bank ecology in halophytes, p. 599–628.In J. Kigel and G. Galili (eds.). Seed Development and Germination. Marcel Dekker, New York.Google Scholar
  49. Ungar, I. A. 1998. Are biotic factors significant in influencing the distribution of halophytes in saline habitats?Botanical Review 64:176–199.CrossRefGoogle Scholar
  50. van der Wal, R., M. Egas, A. van der Veen, andJ. Bakker. 2000. Effects of resource competition and herbivory on plant performance along natural productivity gradients.Journal of Ecology 88:317–330.CrossRefGoogle Scholar
  51. Vince, S. W. andA. A. Snow. 1984. Plant zonation in an Alaskan salt marsh. I. Distribution, abundance and environmental factors.Journal of Ecology 72:651–657.CrossRefGoogle Scholar
  52. Vivian-Smith, G. 1997. Microtopographic heterogeneity and floristic diversity in experimental wetland communities.Journal of Ecology 85:71–82.CrossRefGoogle Scholar
  53. Vogl, R. J. 1966. Salt-marsh vegetation of upper Newport Bay, California.Ecology 47:80–87.CrossRefGoogle Scholar
  54. Warren Wilson, J. 1963. Estimation of foliage denseness and foliage angle by inclined point quadrats.Australian Journal of Botany 11:95–105.CrossRefGoogle Scholar
  55. Wiegand, T. andS. J. Milton. 1996. Vegetation change in semiarid communities: Simulating probabilities and time scales.Vegetatio 125:169–183.CrossRefGoogle Scholar
  56. Zedler, J. B. 1977. Salt marsh community structure in the Tijuana estuary, California.Estuarine, Coastal and Marine Science 5:39–53.CrossRefGoogle Scholar
  57. Zedler, J. B. (ed.). 2001. Handbook for Restoring Tidal Wetlands. Marine Science Series, CRC Press LLC, Boca Raton, Florida.Google Scholar
  58. Zedler, J. B. andG. W. Cox. 1984. Characterizing wetland boundaries: A Pacific coast example.Wetlands 4:43–55.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  1. 1.Department of Botany and ArboretumUniversity of Wisconsin-MadisonMadison
  2. 2.Instituto de Investigaciones sobre los Recursos NaturalesUniversidad Michoacana de San Nicolás de HidalgoMoreliaMéxico

Personalised recommendations