Skip to main content
Log in

Impact of common reed,Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus)

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The invasion ofSpartina marshes by the common reed,Phragmites australis, along the east coast of the United States over the last several decades has been well documented, although we know little about the impact of this invasion on the fish fauna and the few published papers seem contradictory. During 1999–2000 (May–September) we evaluated the fish response to vegetation type (Phragmites australis veersusSpartina alterniflora) by monitoring several aspects of fish early life history (egg deposition, embryonic development, hatching success, and larval and juvenile abundance) in low salinity marshes in the Mullica River in southern New Jersey. The dominant fish species using the marsh surface,Fundulus heteroclitus (93% of total catch, n=996 individuals), reproduced in both vegetation types with eggs deposited in leaf axils near the base of the plant inSpartina and in broken stems ofPhragmites during both years. These eggs also undergo successful embryonic development to hatching in both vegetation types. Larval and juvenile (5–75 mm total length, but 95% < 34 mm TL) abundance of this species is much reduced onPhragmites-dominated (mean CUPE=0.02, n=7 ind) marsh surface relative toSpartina (mean CPUE=2.31). These findings, and similar results for fish abundance in 1997 and 1998, indicate that theSpartima marsh surface is likely essential fish habitat for this species because it provides habitat for larvae and small juveniles, whilePhragmites does not. ThePhragmites invasion in brackish marshes may be having deleterious effects on fish populations and possibly on predators that prey uponF. heteroclitus, and as a result, marsh secondary production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W. 1984. Variation in spawning site selection of the mummichog,Fundulus heteroclitus.Copeia 1984:522–525.

    Article  Google Scholar 

  • Able, K. W. 1999. Measures of juvenile fish habitat quality: Examples from a National Estuarine Research Reserve, p. 134–147.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.

  • Able, K. W. andM. Castagna. 1975. Aspects of an undercribed reproductive behaivor inFundulus heterolitus (Pisces: Cyprinodontidae) from Virginia.Chesapeake Science 16:282–284.

    Article  Google Scholar 

  • Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Burnswick, New Jersey.

    Google Scholar 

  • Able, K. W. andJ. D. Felley. 1986. Geographical variation inFundulus heteroclitus. Tests for concordance between egg and adult morphologies.American Zoologist 26:145–157.

    Google Scholar 

  • Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries 23:633–646.

    Article  Google Scholar 

  • Able, K. W. andD. Hata. 1984. Reproductive behavior in theFundulus heteroclitus-F. grandis complex.Copeia 1984:820–825.

    Article  Google Scholar 

  • Able, K. W., R. Lathrop, and M. P. Deluca. 1996. Background for research and monitoring in the Mullica River-Great Bay estuary. Rutgers University, Institute of Marine and Coastal Sciences Technical Report No. 96-07. New Brunswick, New Jersey.

  • Amsberry, L. 1997. Factors regulating the invasion ofPhragmites australis into southern New England salt marshes. Master's Thesis, Brown University, Providence, Rhode Island.

    Google Scholar 

  • Amsberry, L., M. A. Baker, P. J. Ewanchuk, andM. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  • Angradi, T., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.

    Article  Google Scholar 

  • Armstrong, P. B. andJ. S. Child. 1965. Stages in the normal development ofFundulus heteroclitus.Biological Bulletin 128: 143–168.

    Article  Google Scholar 

  • Balon, E. K. 1990. Epigenesis of an epigeneticist: The development of some alternative concepts on the early ontogeny and evolution of fishes.Guelph Ichthological Review 1:1–48.

    Google Scholar 

  • Bart, D. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.

    Article  Google Scholar 

  • Beck, M., K. Heck, K. W. Able, D. Childers, D. Eggleston, B. M. Gilanders, B. Halpren, C. Hays, K. Hoshino, T. Minello, R. Orth, P. Sheridan, andM. Weinstein. 2001. Identification, conservation and management of estuarine and marine nurseries for fish and invertebrates.Bioscience 51:633–641.

    Article  Google Scholar 

  • Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208.

    Article  Google Scholar 

  • Blossey, B. andJ. F. McCauley. 2000. A plan for developing biological control ofPhragmites australis into North America.Wetlands Journal 12:23–28.

    Google Scholar 

  • Byrne, D. 1978. Life history of the spotfin killifish,Fundulus luciae (Pisces: Cyprinodontidae), in Fox Creek Marsh, Virginia.Estuaries 4:211–227.

    Article  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botamy 64:261–273.

    Article  Google Scholar 

  • Copp, G. H. andV. Kovac. 1996. When do fish with indirect development become juveniles?.Canadian Journal of Fisheries and Aquatic Sciences 53:746–752.

    Article  Google Scholar 

  • Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht, The Netherlands.

    Google Scholar 

  • Dimichele, C. andD. A. Powers. 1982. LDH-B genotype-specific hatching times ofFundulus heteroclitus embryos.Nature 296: 563–564.

    Article  CAS  Google Scholar 

  • Fell, P., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis (Cav.) Trin. Ex Steud., affect the availability of prey sources for the mummichog,Fundulus heteroclitus L.?.Journal of Experimental Marine Biology and Ecology 222:59–77.

    Article  Google Scholar 

  • Ferren, W. R., R. E. Good, R. Walker, andJ. Arsenault. 1981. Vegetation and flora of Hog Islands, a brackish wetland in the Mullica River, New Jersey.Bartonia 48:1–10.

    Google Scholar 

  • Fuiman, L. A. andD. M. Higgs. 1997. Ontogeny, growth and the recruitment process, p. 225–250.In R. C. Chambers and E. A. Trippel (eds.), Early Life History and Recruitment in Fish Populations. chapman and Hall, London, U.K.

    Google Scholar 

  • Hardy, Jr., J. D. 1978. Development of Fishes of the Middle Atlantic Bight, Volume II. U.S. Deparmtent of the Interior, FWS/OBS-78/12. Washington, D.C.

  • Haslam, S. M. 1969. Stem types inPhragmites communis (Cav.) Trin. Ex Steud.Annals of Botany 33:127–131.

    Google Scholar 

  • Jones, C. G., J. H. Lawton, andM. Shachak. 1994. Organisms as ecosystem engineers.Oihos 69:373–386.

    Google Scholar 

  • Kneib, R. T. 1984. Patterns of utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.

    Article  Google Scholar 

  • Kneib, R. T. 1986. The role ofFundulus heteroclitus in salt marsh trophic dynamics.American Zoologist 26:259–69.

    Google Scholar 

  • Kneib, R. T. 1987. Predation risk and use of intertidal habitats by young fishes and shrimp.Ecology 68:379–386.

    Article  Google Scholar 

  • Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.

    Article  Google Scholar 

  • Kneib, R. T. 1997a. Early life stages of resident nekton in intertidal marshes.Estuaries 20:214–230.

    Article  Google Scholar 

  • Kneib, R. T.. 1997b. The role of tidal marshes in the ecology of estuarine nekton.Oceanography Marine Biology: Annual Review 35:163–220.

    Google Scholar 

  • Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (L.) on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31: 121–140.

    Article  Google Scholar 

  • Leonard, L. A. andM. E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies.Limnology and Oceanography 40:1474–1484.

    Article  Google Scholar 

  • Marteinsdottir, G. 1991. Early life history of the mummichog (Fundulus heteroclitus): Egg size variation and its significance in reproduction and survival of eggs and larvae. Ph.D. Dissertation. Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Marteinsdottir, G. andK. W. Able. 1988. Geographic variation in egg size among populations of the mummichog,Fundulus heteroclitus (Pisces: Fundulidae).Copeia 1988:471–478.

    Article  Google Scholar 

  • Marteinsdottir, G. andK. W. Able. 1992. Influence of egg size on embryos and larvae ofFundulus heteroclitus (L.).Journal of Fish Biology 41:883–896.

    Article  Google Scholar 

  • Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, U.S.A.,Marine Ecology Progress Series 209:71–83.

    Article  Google Scholar 

  • Minello, T. J. 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat, p. 43–75.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.

  • NOAA (National Oceanic and Atmospheric Administration). 1996. Magnuson-Stevens Fishery Conservation and Management Act amended through 11 October 1996. National Marine Fisheries Service, National Oceanic and Atmospheric Administration Technical Memorandum NMFS-F/SPO-23. U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Psuty, N. P., M. P. De Luca, R. Lathrop, K. W. Able, S. Whitney, andJ. F. Grassle. 1993. The Mullica River—Great Bay National Estuarine Research Reserve: A unique opportunity for research, preservation and management, p. 1557–1568.In O. T. Magoon, W. S. Wilson, H. Converse, and L. T. Tobin (eds.), Coastal Zone 1993, Volume 2. Proceedings of the Eighth Symposium on Coastal and Ocean Management. American Society of Civil Engineers, New York.

    Google Scholar 

  • Raichel, D. 2001. The influence ofPhragmites dominance on marsh resident fish in the Hackensack Meadowlands. Master's Thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Raichel, D. L., K. W. Able, and J. M. Hartman. In press. The influence ofPhragmites (common reed) on the distribution, abundance and potential prey of a marsh resident fish in the Hackensack Meadowlands, New Jersey.Estuaries.

  • Rooth, J. E. andL. Windham. 2000.Phragmites on death row: Is biocontrol really warranted?Wetland Journal 12:29–37.

    Google Scholar 

  • Stevenson, J. C., M. S. Kearney, andK. L. Sundberg. 2000. The health and long-term stability of natural and restored marshes in Chesapeake Bay, p. 709–735.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht, The Netherlands.

    Google Scholar 

  • Talbot, C. W. andK. W. Able. 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7:434–443.

    Article  Google Scholar 

  • Taylor, M. H. 1984. Lunar synchronization of fish reproduction.Transactions of the American Fisheries Society 113:484–493.

    Article  Google Scholar 

  • Taylor, M. H. andL. Dimichele. 1980. Ovarian changes during the lunar spawning cycle ofFundulus heteroclitus.Copeia 1980: 118–125.

    Article  Google Scholar 

  • Taylor, M. H. andL. Dimichele. 1983. Spawning site utilization in a Delaware population ofFundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1983:719–725.

    Article  Google Scholar 

  • Taylor, M. H., L. Dimichele, andG. J. Leach. 1977. Egg stranding in the life cycle of the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979:291–297.

    Article  Google Scholar 

  • Tupper, M. andK. W. Able. 2000. Habitat use, movements, and food habits of striped bass (Morone saxatilis) in Delaware Bay (U.S.A.): Comparison between a restored and a reference salt marsh.Marine Biology 137:1049–1058.

    Article  Google Scholar 

  • Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  CAS  Google Scholar 

  • Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis, affect essential fish habitat?Estuaries 22:63–72.

    Article  Google Scholar 

  • Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, andS. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: A stable isotope approach.Transactions of the American Fisheries Society 129:797–810.

    Article  Google Scholar 

  • Weisburg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichog,Fundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.

    Article  Google Scholar 

  • Windham, L. 1995. Effects ofPhragmites australis invasion on aboveground biomass and soil properties in brackish tidal marsh of Mullica River, New Jersey. Master Thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Windham, L. andR. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on above-ground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–35.

    Article  Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

Sources of Unpublished Materials

  • Sakowicz, G. P. Unpublished data. Rutgers University Marine Field Station, 800 Great Bay Boulevard, Tuckerton, New Jersey 08087.

  • Windham, L. Personal communication. Department of Earth and Environmental Sciences, Lehigh University, Williams Hall 31, Bethlehem, Pennsylvania 18015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth W. Able.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Able, K.W., Hagan, S.M. Impact of common reed,Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus). Estuaries 26, 40–50 (2003). https://doi.org/10.1007/BF02691692

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02691692

Keywords

Navigation