Skip to main content
Log in

A decade of change in the Skidaway River estuary II. Particulate organic carbon, nitrogen, and chlorophylla

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

A sampling program was initiated in 1986 in the Skidaway River estuary, a tidally dominated subtropical estuary in the southeastern USA. Hydrography, nutrients, particulate organic matter (POM), and microbial and plankton abundance and composition were measured at weekly intervals at high and low tide on the same day at a single site. Hydrographic and nutrient data during 1986–1996 were given in Verity (2002); particulate organic carbon (POC), nitrogen (PON) and chlorophylla (chla) are presented here; plankton data will be presented elsewhere. Chla was fractionated into <8 μm and >8 μm size classes. All classes of POM exhibited distinct seasonal patterns superimposed upon significant long-term increases during the study period. Total chla, <8 μm chla, and >8 μm chla increased 36%, 61%, and 18%, respectively, however the fraction of total biomass attributable to small phytoplankton (<8 μm) increased 25%. The annual amplitude between minimum and maximum stock sizes increased significantly, meaning that bloom events became larger. POC and PON also increased 16% over the decade and, as observed with patterns in chla, exhibited increases in annual amplitude. The C:N ratio was typically 6.4–6.6 (wt:wt) and did not change significantly, while the annual mean C:Chla ratio decreased 19% from 165 to 140. These characteristics indicated highly labile POM composed of significant amounts of detritus, but which became increasingly autotrophic with time. Averaged over the decade, temperature explained 45–50% of the variance in POM. Nutrients were even better predictors of POM, as 60–75% of the variance in chla, POC, and PON were explained by ambient concentrations of DIN, or PO4. Combined with significant increases in NO3, NH4, PO4, Si(OH)4, and DON during 1986–1996, these data strongly suggest that anthropogenic activities contributed to increased loading of dissolved nutrients, which became incorporated into living and nonliving particulate organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alber, M. andJ. E. Sheldon. 1999. Use of a date-specific method to examine variability in the flushing times of Georgia estuaries.Estuarine, Coastal and Shelf Science 49:469–482.

    Article  Google Scholar 

  • Alpine, A. E. andJ. E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary.Limnology and Oceanography 37:946–955.

    Google Scholar 

  • Andersson, A. andA. Rudehall. 1993. Proportion of plankton biomass in particulate organic carbon in the northern Baltic Sea.Marine Ecology Progress Series 95:133–139.

    Article  Google Scholar 

  • Banse, K. 1977. Determining the carbon-to-chlorophyll ratio of natural phytoplankton.Marine Biology 41:199–212.

    Article  CAS  Google Scholar 

  • Berges, J. A., D. J. S. Montagnes, C. L. Hurd, andP. J. Harrison. 1994. Fitting ecological and physiological data to rectangular hyperbolae: A comparison of methods using Monte Carlo simulations.Marine Ecology Progress Series 114:175–183.

    Article  Google Scholar 

  • Brush, G. S. 1984. Stratigraphic evidence of eutrophication in an estuary.Water Resources Research 20:531–541.

    Article  CAS  Google Scholar 

  • Cloern, J. E., C. Grenz andL. Vidergar-Lucas. 1995. An empirical model of the phytoplankton chlorophyll:carbon ratio—The conversion factor between productivity and growth rate.Limnology and Oceanography 40:1313–1321.

    Article  Google Scholar 

  • Coastal Georgia Regional Development Center. 1998. Coastal Georgia Regional Plan. June 1998, Technical report. Brunswick, Georgia.

  • Cooper, S. R. 1995 Chesapeake Bay watershed historical land use: Impact on water quality and diatom communities.Ecological Applications 5:703–723.

    Article  Google Scholar 

  • Dame, R., M. Alber, D. Allen, M. Mallin, C. Montague, A. Lewitus, A. Chalmers, R. Gardner, C. Gilman, B. Kjerfve, J. Pickney, andN. Smith. 2000. Estuaries of South Atlantic coast of North America: Their geographic signatures.Estuaries 23: 793–819.

    Article  CAS  Google Scholar 

  • Dame, R. F., J. D. Spurrier, T. M. Williams, B. Kjerfve, R. G. Zingmark, T. G. Wolaver, T. H. Chrzanowski, H. N. McKellar, andF. J. Vernberg. 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA.Marine Ecology Progress Series 72:153–166.

    Article  Google Scholar 

  • DeVoe, M. R. andG. S. Kleppel. 1995. The South Atlantic Bight Land Use-Coastal Ecosystem Study (LU-CES): Conceptual Framework. South Carolina Sea Grant Consortium, Charleston, South Carolina.

    Google Scholar 

  • Fletcher, M., P. G. Verty, M. E. Frischer, K. A. Maruya, andG. I. Scott. 1998. Microbial indicators and phytoplankton and bacterial indicators as evidence of contamination caused by changing land use patterns. LU-CES State of Knowledge Report. South Carolina Sea Grant Consortium, Charleston, South Carolina.

    Google Scholar 

  • Gassmann, G. andM. Gillbricht. 1982. Correlations between phytoplankton, organic detritus, and carbon in North Sea waters during the Fladenground Experiment (FLEX ’76)Helgolander Wissenschaftliche Meeresuntersuchungen 35:253–262.

    Article  CAS  Google Scholar 

  • Glibert, P. M. andD. E. Terlizzi. 1999. Co-occurrence of elevated urea levels and dinoflagellate blooms in temperate estuarine aquaculture ponds.Applied and Environmental Microbiology 65:5594–5596.

    CAS  Google Scholar 

  • Gordina, A. D., E. V. Pavlova, E. I. Ovsyany, J. G. Wilson, R. B. Kemp, andA. S. Romanov. 2001. Long-term changes in Sevastopol Bay (the Black Sea) with particular reference to the ichthyoplankton and zooplankton.Estuarine, Coastal and Shelf Science 52:1–13.

    Article  CAS  Google Scholar 

  • Greve, W. andT. R. Parsons. 1977. Photosynthesis and fish production: Hypothetical effects of climatic change and pollution.Helgolander Wissenschaftliche Meeresuntersuchungen 30:666–672.

    Article  Google Scholar 

  • Hanson, R. B., C. Y. Robertson, J. A. Yoder, P. G. Verity, andS. S. Bishop. 1990. Nitrogen recycling in coastal waters of southeastern U. S. during summer 1986.Continental Shelf Research 8:49–68.

    Article  Google Scholar 

  • Harding, Jr.,L. W. andE. S. Perry. 1997. Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950–1994.Marine Ecology Progress Series 157:39–52.

    Article  Google Scholar 

  • Litaker, W., C. S. Duke, B. E. Kenney, andJ. Ramus. 1988. Diel chla and phaeopigment cycles in a shallow tidal estuary: Potential role of microzooplankton grazing.Marine Ecology Progress Series 47:259–270.

    Article  CAS  Google Scholar 

  • Lomas, M. W. andP. M. Glibert. 2000. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates.Journal of Phycology 36:903–913.

    Article  CAS  Google Scholar 

  • Meeuwig, J. J., J. B. Rasmussen andR. H. Peters. 1998. Turbid waters and clarifying mussels: Their moderation of empirical chl: nutrient relations in estuaries in Prince Edward Island, Canada.Marine Ecology Progress Series 171:139–150.

    Article  CAS  Google Scholar 

  • National Ocean and Atmospheric Administration (NOAA). 1996. Estuarine Eutrophication Survey, Volume 1. Office of Ocean Resources Conservation Assessment, South Atlantic Region, Silver Spring, Maryland.

    Google Scholar 

  • Nixon, S. W. 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems.Limnology and Oceanography 33:1005–1025.

    Article  CAS  Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns.Ophelia 41:199–219.

    Google Scholar 

  • Nixon, S. W. 1997. Prehistoric nutrient inputs and productivity in Narragansett Bay.Estuaries 20:253–261.

    Article  CAS  Google Scholar 

  • Odum, E. P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: Tidal subsidy, outwelling, and detritus-based food chains, p. 485–495.In V. S. Kennedy, (ed.). Estuarine Perspectives. Academic Press, Inc., New York.

    Google Scholar 

  • Okaichi, T. 1997. Red tides in the Seto Inland Sea, p. 251–304.In T. O. Okaichi and T. Yanagi (eds.). Sustainable Development in the Seto Inland Sea, Japan—From the Viewpoint of Fisheries. Terra Scientific Publishing Co., Tokyo, Japan.

    Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergammon Press, New York.

    Google Scholar 

  • Peierls, B. L., N. F. Caraco, M. L. Pace, andJ. J. Cole 1991. Human influence on river nitrogen.Nature 350:386–387.

    Article  Google Scholar 

  • Philippart, C. J. M., G. C. Cadee, W. van Raaphorst andR. Riegman. 2000. Long-term phytoplankton-nutrient interactions in a shallow coastal sea: Algal community structure, nutrient budgets, and dentrification potential.Limnology and Oceanography 45:131–144.

    Article  CAS  Google Scholar 

  • Pomeroy, L. R. 1980. Detritus and its role as a food source, p. 84–102.In R. K. Barnes and K. H. Mann (eds.). Fundamentals of Aquatic Ecosystems. Blackwell Science Ltd., London, U.K.

    Google Scholar 

  • Pomeroy, L. R. 1985. The microbial food web of the southeastern U.S. continental shelf, p. 118–129.In L. P. Atkinson, D. W. Menzel, and K. A. Bush (eds.). Oceanography of the Southeastern U.S. Continental Shelf, Coastal and Estuarine Sciences, Volume 2. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Riebesell, U. andD. A. Wolf-Gladrow. 2002. Supply and uptake of inorganic nutrients, p. 109–140.In P. J. Williams, D. N. Thomas, and C. S. Reynolds (eds.) Phytoplankton Productivity Carbon Assimilation in Marine and Freshwater Ecosystems. Blackwell Science Ltd., Oxford, U.K.

    Google Scholar 

  • Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic, p. 29–40.In E. Granéli, B. Sunderstrom, L. Edler, and D. M. Anderson (eds.). Toxic Marine Phytoplankton. Elsevier, New York.

    Google Scholar 

  • Smetacek, V. andP. Hendricksen. 1979. Composition of particulate organic matter in Kiel Bight in relation to phytoplankton succession.Oceanologica Acta 2:287–298.

    CAS  Google Scholar 

  • Stokes, III,W. R. andR. D. MacFarlane. 1996. Water Resources Data, Georgia, Water Year 1996. Water-Data Report, CA-96-1. U. S. Department of Interior, U.S. Geological Survey, Doraville, Georgia.

    Google Scholar 

  • Thompson, P. A., M. Guo, andP. J. Harrison. 1992. Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton.Journal of Physicology 28:481–488.

    Article  CAS  Google Scholar 

  • Verity, P. G. 2002. A decade of change in the Skidaway River estuary. I. Hydrography and nutrients.Estuaries 25:xxx-xxx.

    Google Scholar 

  • Verity, P. G., J. A. Yoder, S. S. Bishop, J. R. Nelson, D. B. Craven, J. O. Blanton, C. Y. Robertson, andC. R. Tronzo. 1993. Composition, productivity, and nutrient chemistry of a coastal ocean planktonic food web.Continental Shelf Research 13:741–776.

    Article  Google Scholar 

  • Wolaver, T. G., S. Hutchinson, andM. Marozas. 1986. Dissolved and particulate organic carbon in the North Inlet estuary, South Carolina: What controls their concentrations?Estuaries 9:31–38.

    Article  CAS  Google Scholar 

  • Yoder, J. A. 1985. Environmental control of phytoplankton production on the southeastern U.S. continental shelf, p. 93–103.In L. P. Atkinson, D. W. Menzel, and K. A. Bush (eds.), Oceanography of the Southeastern U.S. Continental Shelf, Coastal and Estuarine Sciences Volume 2. American Geophysical Union, Washington D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verity, P.G. A decade of change in the Skidaway River estuary II. Particulate organic carbon, nitrogen, and chlorophylla . Estuaries 25, 961–975 (2002). https://doi.org/10.1007/BF02691344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02691344

Keywords

Navigation