Advertisement

Cortical control of sinus arrhythmia in man studied by spectral analysis

  • Radu M. Negoescu
  • Irma Eva Csiki
  • Maria Pafnote
  • Stewart Wolf
Papers

Abstract

Eighteen healthy male volunteers, 21–26 years old, participated in a study intended to detect cortical control of beat-to-beat heart rate variability independent of the effects on breathing and mean heart rate. They were tested while seated and standing relaxed (baseline), and while performing tasks requiring concentrated attention while sitting. The mental concentration elicited a typical cardiorespiratory response manifested by moderate acceleration and shallowing of respiration with a small increase of mean heart rate (HR), a pattern already widely acknowledged as typically associated with concentration. With the aid of a variable tone delivered to the ear as a guide, the subjects were trained to breathe at the same rate without concentrating in order to test the influence of respiration on the concentration pattern.

ECG, thermistor pneumogram and ear-lobe photo-plethysmogram were recorded and data reduction was performed on 3 minute or 1 minute data sequences selected for the best steady-state. Statistical treatment was limited to a subgroup of 10 subjects in whom there was no overlapping of the spectra of respiratory and Traube-Hering-Mayer sinus arrhythmia (RSA and THM-SA, respectively).

Mental concentration elicited significant depression of both RSA and THM-SA even if the respiratory parameters were kept constant.

Keywords

Heart Rate Human Subjects Respiratory/Traube-Hering-Mayer Sinus Arrhythmia Mental Concentration Erect Posture Fourier Spectrum Sympathetic Tone Cortical Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelone, A., & Coulter, N.A. (1964). Respiratory sinus arrhythmia: a frequency dependent phenomenon, Journal of Applied Physiology, 18: 479–482.Google Scholar
  2. Bigger, J.T., Fleiss, J.L., Steinman, R.C., Rolnitsky, L.M., Kleiger, R.E., & Rottman, J.N. (1992). Frequency domain measures of heart period variability and mortality after myocardial infarction.Circulation, 85: 164–171.PubMedGoogle Scholar
  3. Buros, O.K. (1989).Buros Mental Measurement Yearbook. Highland Park, NJ: Gryphon Press.Google Scholar
  4. Bynum, T.E., Long, J.W., Ziegner, C., & Wolf, S. (1971). The control of sinus arrhythmia in man (Abs.)Conditional Reflex, 6: 168–169.Google Scholar
  5. Carlson, A.J. & Meek, W.J. (1908). On the mechanism of the embryonic heart rhythm in limulus.American Journal of Physiology, 21: 1–10.Google Scholar
  6. Carré, M. J-C. (1985). Les fenetres de pondcration, In J. Max (Ed.),Methodes et techniques de traitement du signal et applications aux measures physiques, 1: 321. Paris: Masson.Google Scholar
  7. Casolo, G.C., Stroder, P., Signorini, C., Calzolari, F., Zucchini, M., Balli, E., Sulla, A., & Lazzerini, S. (1992). Heart rate variability during the acute phase of myocardial infarction.Circulation, 85: 2073–2079.PubMedGoogle Scholar
  8. Charnock, D.M., & Manenica, I. (1978). Spectral analysis of RR intervals under different work conditions.Ergonomics, 21: 103–108.PubMedCrossRefGoogle Scholar
  9. Cripps, T.R., Malik, M., Farrell, T.G., & Camm, A.J. (1991). Prognostic value of reduced heart rate variability after myocardial infarction: clinical evaluation of a new analysis method.British Heart Journal, 65: 14–19.PubMedCrossRefGoogle Scholar
  10. Daniolopolu, D. (1944).Le systeme nerveux de la vie vegetative. Paris: Masson & Cie, 381–395.Google Scholar
  11. Gross, D. (1962). The clinical significance of sinus arrhythmia in angina pectoris.Cardiologia, 41: 247–255.PubMedCrossRefGoogle Scholar
  12. Grossman, P., & Svebak, S. (1987). Respiratory sinus arrhythmia as an index of parasympathetic cardiac control during active coping.Psychophysiology, 24: 228–235.PubMedCrossRefGoogle Scholar
  13. Hatch, J.P., Klatt, K., Porges, S.W., Schoreder-Jasheway, L., & Supik, J.D. (1986). The relation between rhythmic cardiovascular variability and reactivity to orthostatic, cognitive, and cold pressor stress.Psychophysiology, 23: 48–56.PubMedCrossRefGoogle Scholar
  14. Hirsch, J.P., & Bishop, B. (1981). Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate.American Journal Physiology 241,Heart Circulation Physiology, 10: H620-H629.Google Scholar
  15. Kitney, R.I. (1979). A nonlinear model for studying oscillations in the blood pressure control system.Journal of Biomedical Engineering, 1: 89–99.PubMedCrossRefGoogle Scholar
  16. Kjellgren, O., & Gomes, J.A. (1993). Heart rate variability and baroreflex sensitivity in myocardial infarction.American Heart Journal, 204–214, January.Google Scholar
  17. Langhorst, P., Lambertz, M., & Schultz, G. (1987). Dynamic organization of the central nervous system for cardiovascular, respiratory and somatomotor regulation., 9th Conf. of the IEEE Engineering in Medical & Biology Society, Boston, 891–892.Google Scholar
  18. Mulder, G., & Mulder-Hajonides van der Meulen (1973). Mental load and the measurement of heart rate variability.Ergonomics, 16(1): 69–83.PubMedCrossRefGoogle Scholar
  19. Mulder, G., & Mulder, L.J.M. (1981). Information processing and cardiovascular control.Psychophysiology, 18: 392–402.PubMedCrossRefGoogle Scholar
  20. Negoescu, R. (1976). Digital cardiotachometer (in Romanian).Automatica si electronica, 20: 42–48.Google Scholar
  21. Negoescu, R., & Wolf, S. (1993). THM power in the spectrum of the QT interval: a refined clue to the force of ventricular contraction in man. 12th Southern Biomedical Engineering Conference, New Orleans.Google Scholar
  22. Negoescu, R., & Csiki, I.E., (1989a). Autonomic control of the heart in some vagal maneuvers and normal sleep. Ibid., 26: 39–40.Google Scholar
  23. Negoescu, R.M., & Csiki, I.E. (1989b). A model of respiratory sinus arrhythmia in man.Medical & Biological Engineering & Computing, 27: 260–268.CrossRefGoogle Scholar
  24. Negoescu, R.M. (1992). Migration of the true pacemaker within the sinoatrial cell aggregate in man.Medical & Biological Engineering & Computing, 30: CE42-CE48.CrossRefGoogle Scholar
  25. Negoescu, R.M., & Csiki, I.E. (1991). The weight of the cortical inflow against medullary reflexes as enlightened by spectral analysis of heart rate and systolic pressure waves.Physiology, 28: 17–22.Google Scholar
  26. Pagani, M., Mazzuero, G., Ferrari, A., Liberati, D., Cerutti, S., Vaitl, D., Tavazzi, L., & Malliani, A. (1991). Sympathovagal interaction during mental stress.Circulation, 83: 1143–1151.Google Scholar
  27. Sayers, B. (1973). Analysis of heart rate variability.Ergonomics, 16: 17–32.PubMedCrossRefGoogle Scholar
  28. Scherf, D., & Boyd, L.J. (1946).Clinical Electrocardiography. Philadelphia: Lippincott.Google Scholar
  29. Schneider, R.A., & Costiloe, J.P. (1972). The application of spectral analysis to the study of respiratory arrhythmia and other variations in heart rate. In S. Wolf, (Ed.),The artery and the process of arteriosclerosis. New York: Plenum Press.Google Scholar
  30. Schwartz, P.J., & Wolf, S. (1978). QT interval prolongation as predictor of sudden death in patients with myocardial infarction.Circulation, 57: 1074–1077.PubMedGoogle Scholar
  31. Wenckebach, K.F., & Winterberg, H. (1927).Die unregelmassige Herztatigkert. Leipzig: Engelman.Google Scholar
  32. Wiersma, E.D. (1913). Der Einflub von Bewubsteinszuständen auf den Puls und auf die Atmung. Zeitschrift für die gesamte.Neurologie und Psychiatrie, 1.Google Scholar
  33. Wolf, M.M., Varigos, G.A., Hunt, D. & Sloman, J.G. (1978). Sinus arrhythmia in acute myocardial infarction.Medical Journal of Australia, 52–53.Google Scholar
  34. Zemaityte, D.M. (1986). Conditionality of heart rate response in healthy subjects and patients with ischemic heart disease.The Behavioral and Brain Sciences, 9: 306–307.CrossRefGoogle Scholar

Copyright information

© Springer 1993

Authors and Affiliations

  • Radu M. Negoescu
    • 1
  • Irma Eva Csiki
    • 1
  • Maria Pafnote
    • 1
  • Stewart Wolf
    • 2
  1. 1.Institute of Hygiene and Public HealthBucharestRomania
  2. 2.Totts Gap Medical Research InstituteBangor

Personalised recommendations