Skip to main content
Log in

A review of neuroendocrine and neurochemical changes associated with static and extremely low frequency electromagnetic field exposure

  • Published:
Integrative Physiological and Behavioral Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adair, R.K. (1991). Constraints on biological effects of weak extremely-low-frequency electromagnetic fields.Physical Reviews, 43, 1039–1048.

    Article  Google Scholar 

  • Adey, W.R. (1981) Tissue interactions with nonionizing electromagnetic fields.Physiological Reviews, 61, 435–513.

    PubMed  Google Scholar 

  • Adey, W.R. (1990). Electromagnetic fields, cell membrane amplification, and cancer promotion. InExtremely Low Frequency Electromagnetic Fields: The Question of Cancer, B.W. Wilson, R.G. Stevens, & L.E. Anderson, eds., Columbus, OH: Battelle, pp. 211–249.

    Google Scholar 

  • Anderson, L.E. (1991). Biological effects of extremely low-frequency electromagnetic fields:In vivo studies. InProceedings of the Scientific Workshop on the Health Effects of Electric and Magnetic Fields on Workers, Bierbaum, P.J., & Peters, J.M., eds., National Institute for Occupational Safety and Health, Cincinnati, pp. 47–89.

    Google Scholar 

  • Blackman, C.F. (1990). ELF effects on calcium homeostatsis. InExtremely Low Frequency Electromagnetic Fields: The Question of Cancer, Wilson, B.W., Stevens, R.G., & Anderson, L.E., eds., Columbus, OH: Battelle, pp. 187–210.

    Google Scholar 

  • Blackman, C.F., Benane, S.G., Rabinowitz, J.R., House, D.E., & Jaines, W.T. (1985). A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissuein vitro.Bioelectromagnetics, 6, 327–338.

    Article  PubMed  Google Scholar 

  • Burda, H., Marhold, S., Westenberger, T., Wiltschko, R., & Wiltschko, W. (1990). Magnetic compass orientation in a subterranean rodentCrytomys hottentotus (Bathyergidae).Experientia, 46, 528–530.

    Article  PubMed  Google Scholar 

  • Gavalas-Medici, R., & Day-Magdelano, S.R. (1976). Extremely low frequency electric fields affect schedule-controlled behavior of monkeys.Nature, 261, 256–259.

    Article  PubMed  Google Scholar 

  • Free, M.M., Kaune, W.T., Phillips, R.D., & Cheng, H.C. (1981). Endocrinological effects of strong 60 Hz electric fields on rats.Bioelectromagnetics, 2, 105–121.

    Article  PubMed  Google Scholar 

  • Graves, H.B., Long, P.D., & Poznaniak, D. (1979). Biological effects of 60-Hz alternating-current fields: A Cheshire cat phenomenon. InBiological Effects of Extremely Low Frequency Electromagnetic Fields, Phillips, R.D., Gillis, M.F., Kaune, W.T., & Mahlum, D.D., eds., CONF-781016, National Toxicology Information Service, Springfield, pp. 184–197.

    Google Scholar 

  • Groza, P., Casmacia, R., & Bubuiann, E. (1978). Blood and urinary catecholamine variations under the action of a high voltage electric field.Physiologie, 15, 139–144.

    PubMed  Google Scholar 

  • Hargrave, P.A., & McDowell, J.H. (1992). Rhodopsin and phototransduction: A model system for G protein-linked receptors.FASEB Journal, 6, 2323–2331.

    PubMed  Google Scholar 

  • Harkness, J.E., & Ridgeway, N.D. (1980). Chromodacryorrhea in laboratory rats (Rattus norvegicus): Etiologic considerations.Laboratory Animal Science, 30, 841–844.

    PubMed  Google Scholar 

  • Hackman, R.M., & Graves, H.B. (1981). Corticosterone levels in mice exposed to high intensity electric fields.Behavioral and Neural Biology, 32, 201–213.

    Article  PubMed  Google Scholar 

  • Jaffe, R.A., Laszenski, B.L., Carr, D.B., & Phillips, R.D. (1980). Chronic exposure to 60 Hz electric fields: Effects on synaptic transmission and peripheral nerve function in the rat.Bioelectromagnetics, 1, 131–138.

    Article  PubMed  Google Scholar 

  • Kato, M., Honma, K.I., Shigemitsu, T., & Shiga, Y. (in press). Effects of circularly polarized sinusoidal 50 Hz magnetic field exposure on plasma and pineal melatonin levels in rats.Bioelectromagnetics.

  • Kashtonov, S.I., & Adakov, S.K. (1981). Dominant role of the mesencephalic reticular formation in the mechanism of preventive effects of a UHF electromagnetic field on responses of hypothalamic emotiogenic centers.Bulletin of Experimental Biology and Medicine, 92, 523–526.

    Google Scholar 

  • Kempf, E., Mandel, P., Oliverio, A., & Puglisi-Allegra, S. (1982). Circadian variations of noradrenaline, 5-hydroxytryptamine and dopamine in specific brain areas of C57BI/6 and BALB/c mice.Brain Research, 232, 472–478.

    Article  PubMed  Google Scholar 

  • Lerchl, A., Nonaka, K.O., & Reiter, R.J. (1991). Pineal gland “magnetosensitivity” to static magnetic fields is a consequence of induced electric currents (eddy currents).Journal of Pineal Research, 10, 109–116.

    Article  PubMed  Google Scholar 

  • Lerchl, A., Nonaka, K.O., Stokkan, K.-A., & Reiter, R.J. (1990). Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields.Biochemical and Biophysical Research Communications, 169, 102–108.

    Article  PubMed  Google Scholar 

  • Leung, F.C., Rommereim, D.N., Miller, R.A. & Anderson, L.E. (1990). Brown-colored deposits on hair of female rats chronically exposed to 60-Hz electric fields.Bioelectromagnetics, 11, 257–259.

    Article  PubMed  Google Scholar 

  • Liboff, A.R., & McLeod, B.R. (1988). Kinetics of channelized membrane ions in magnetic fields.Bioelectromagnetics, 9, 39–52.

    Article  PubMed  Google Scholar 

  • Marino, A.A., Becker, R.O., & Ullrich, B. (1976). The effects of continuous exposure to low frequency electric fields on three generations of mice: A pilot study.Experientia, 32, 565–566.

    Article  PubMed  Google Scholar 

  • Marino, A.A., Berger, T.J., Austin, B.P., Becker, R.O., & Hart, F.X. (1977).In vivo bioelectrochemical changes associated with exposure to extremely low frequency electric fields.Physiological and Chemical Physics, 9, 433–441.

    Google Scholar 

  • Meijer, J.H. (1991). Information of visual information by the suprachiasmatic neucleus. InSuprachiasmatic Nucleus, Klein, D.C., Moore, R.Y., & Reppert, S.M., eds., New York: Oxford, pp. 107–119.

    Google Scholar 

  • Morgan, W.W., McFadin, L.S., & Harvey, C.Y. (1973). A daily rhythm in norepinephrine content in regions of the hamster brain.Comparative and General Pharmacology, 4, 47–52.

    Article  Google Scholar 

  • Olcese, J. (1990). The neurobiology of magnetic field detection in rodents.Progress in Neurobiology, 35, 325–330.

    Article  PubMed  Google Scholar 

  • Olcese, J., & Hurlbut, E.C. (1989). Comparative studies on the retinal dopamine response to altered magnetic fields in rodents.Brain Research, 498, 145–148.

    Article  PubMed  Google Scholar 

  • Olcese, J., & Reuss, S. (1986). Magnetic field effects on pineal melatonin synthesis: Comparative studies on albino and pigmented rodents.Brain Research, 369, 365–368.

    Article  PubMed  Google Scholar 

  • Olcese, J., Reuss, S., Stehle, J., Steinlechner, S., & Vollrath, L. (1985a). The mammalian pineal and retinae as geomagnetic field detectors. InFundamentals and Clinics in Pineal Research, Trentini, G.P., DeGaetani, C., & Pevet, P., eds., New York: Raven, pp. 79–82.

    Google Scholar 

  • Olcese, J., Reuss, S., & Vollrath, L. (1985b). Evidence of the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat.Brain Research, 333, 382–384.

    Article  PubMed  Google Scholar 

  • Oster, G. (1962). Phosphenes.Scientific American, 222, 83–87.

    Google Scholar 

  • Portet, R.T., & Cabanes, J. (1988). Development of young rats and rabbits exposed to a strong electric field.Bioelectromagnetics, 9, 95–104.

    Article  PubMed  Google Scholar 

  • Quinlan, W.J., Petrondas, D., Lebda, N., Pettit, S., & Michaelson, S.M. (1985). Neuroendocrine parameters in the rat exposed to 60 Hz electric fields.Bioelectromagnetics, 6, 381–389.

    Article  PubMed  Google Scholar 

  • Reiter, R.J. (1985). Action spectra, dose-response relationships and temporal aspects of light’s effects on the pineal gland.Annals of the New York Academy of Science, 453, 215–230.

    Article  Google Scholar 

  • Reiter, R.J. (1991a). Pineal melatonin: Cell biology of its synthesis and of its physiological interactions.Endocrine Reviews, 12, 151–180.

    Article  PubMed  Google Scholar 

  • Reiter, R.J. (1991b). Melatonin: The chemical expression of darkness.Molecular and Cellular Endocrinology, 79, C153-C159.

    Article  PubMed  Google Scholar 

  • Reiter, R.J. (1991c). Melatonin: That ubiquitously acting pineal hormone.News in Physiological Sciences, 6, 223–227.

    Google Scholar 

  • Reiter, R.J. (1992). Alterations of the circadian melatonin rhythm by the electromagnetic spectrum: A study in environmental toxicology.Regulatory Toxicology and Pharmacology, 15, 226–244.

    Article  PubMed  Google Scholar 

  • Reiter, R.J., Anderson, L.E., Buschbom, R.L., and Wilson, B.W. (1988). Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60 Hz electric fieldsin utero and for 23 days after birth.Life Sciences, 42, 2203–2206.

    Article  PubMed  Google Scholar 

  • Reiter, R.J., & Richardson, B.A. (1992). Magnetic field effects on pineal indoleamine metabolism and possible biological consequences.FASEB Journal, 6, 2283–2287.

    PubMed  Google Scholar 

  • Reuss, S., & Olcese, J. (1986). Magnetic field effects on the rat pineal gland: Role of retinal activation by light.Neuroscience Letters, 64, 97–101.

    Article  PubMed  Google Scholar 

  • Reuss, S., Semm P., & Vollrath, L. (1983). Different types of magnetically sensitive cells in the rat pineal gland.Neuroscience Letters, 40, 23–26.

    Article  PubMed  Google Scholar 

  • Richardson, B.A., Yaga, K., Reiter, R.J., & Morton, D.J. (1992). Pulsed static magnetic field effects onin vitro pineal indoleamine metabolism.Biochimica et Biophysica Acta, 1137, 59–64.

    Article  PubMed  Google Scholar 

  • Rudolph, K., Wirz-Justice, A., Kranchli, K. & Feere, H. (1988). Static magnetic fields decrease nocturnal cAMP in the rat.Brain Research, 446, 159–160.

    Article  PubMed  Google Scholar 

  • Sasser, L.B., Morris, J.E., Buschbom, R.L., Miller, D.L., & Anderson, L.E. (1991). Effects of 60 Hz electric fields on pineal melatonin during various times of the dark period.Abstracts of the Annual Review of Research in Biological Effects of 50 and 60 Hz Electric and Magnetic Field, Milwaukee, WI, p. A-24.

  • Scheving, L.E., Harrison, W.H., Gordon, P. & Pauly, J.E. (1968). Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain.American Journal of Physiology, 214, 166–173.

    PubMed  Google Scholar 

  • Seegal, R.F., Wolpaw, J.R., & Dowmann, R. (1989). Chronic exposure of primates to 60 Hz electric and magnetic fields: II. Neurochemical effects.Bioelectromagnetics, 10, 289–301.

    Article  PubMed  Google Scholar 

  • Semm, P. (1983). Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons.Comparative Biochemistry and Physiology, 76A, 683–689.

    Google Scholar 

  • Semm, P. (1992). Pineal function in mammals and birds in altered by earth-strength magnetic fields. InElectromagnetic Fields and Circadian Rhythmicity, Moore-Ede, M.C., Campbell, S.S., & Reiter, R.J., eds., Boston: Birkhäuser, pp. 53–62.

    Google Scholar 

  • Semm, P., Schneider, T., & Vollrath, L. (1980). Effects of an earth-strength magnetic field on electrical activity of pineal cells.Nature, 288, 607–608.

    Article  PubMed  Google Scholar 

  • Stehle, J., Reuss, S., Schröder, H., Herschel, M., & Vollrath, L. (1988). Magnetic field effects an pineal N-acetyltransferase activity and melatonin content in the gerbil: Role of pigmentation.Physiology and Behavior, 44, 91–94.

    Article  PubMed  Google Scholar 

  • Taugner, R., Schiller, A., & Rix, E. (1981). Gap junctions between pinealocytes.Cell and Tissue Research, 218, 303–314.

    Article  PubMed  Google Scholar 

  • Tenforde, T.S. (1990). Biological interactions and human health effects of extremely low frequency magnetic fields. InExtremely Low Frequency Electromagnetic Fields: The Question of Cancer, Wilson, B.W., Stevens, R.G., & Anderson, L.G., eds., Columbus, OH: Battelle, pp. 291–315.

    Google Scholar 

  • Vasquez, B.J., Anderson, L.E., Lowery, C.I., & Adey, W.R. (1988). Diurnal patterns in brain biogenic amines of rats exposed to 60 Hz electric fields.Bioelectromagnetics, 9, 229–236.

    Article  PubMed  Google Scholar 

  • Welker, H.A., Semm, P., Willig R.P., Commentz, J.C., Wiltschko, W., & Vollrath, L. (1983). Effect of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland.Experimental Brain Research, 50, 426–432.

    Article  Google Scholar 

  • Wilson, B.W., & Anderson, L.E. (1990). ELF electromagnetic field effects on the pineal gland. InExtremely Low Frequency Electromagnetic Fields: The Question of Cancer, Wilson, B.W., Stevens, R.G., & Anderson, L.E., eds., Columbus, OH: Battelle, pp. 159–186.

    Google Scholar 

  • Wilson, B.W., Anderson, L.E., Hilton, D.I., & Phillips, R.D. (1981). Chronic exposure to 60 Hz electric fields: Effects on pineal function in the rat.Bioelectromagnetics, 2, 371–380.

    Article  PubMed  Google Scholar 

  • Wilson, B.W., Chess, E.K., and Anderson, L.E. (1986). 60 Hz electric field effects on pineal melatonin rhythms: Time course of onset and recovery.Bioelectromagnetics, 7, 239–242.

    Article  PubMed  Google Scholar 

  • Wilson, B.W., Stevens, R.G., & Anderson, L.E. (1989). Neuroendocrine mediated effects of electromagnetic field exposure: Possible role of the pineal gland.Life Sciences, 49, 85–92.

    Google Scholar 

  • Yaga, K., Reiter, R.J., Manchester, L.C., Nieves, H., Sun, J.-H., & Chen, L.-D. (in press). Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod.Brain Research Bulletin.

  • Yellon, S.M. (1991). An acute 60-Hz magnetic field exposure suppresses the nighttime melatonin rise in the pineal and circulation of the adult Djungarian hamster.Abstracts of the Annual Review of Research on Biological Effects of 50 and 60-Hz Electric and Magnetic Fields, Milwaukee, WI, p. A-25.

  • Zawilska, J., & Nowak, J.Z. (1991). Regulation of melatonin biosynthesis in vertebrate retina: Involvement of dopamine in the suppressive effects of light.Folia Histochemica et Cytobiologica, 29, 1–14.

    Google Scholar 

  • Zecca, L., Ferrario, P., Morgonato, V., Cerretaelli, P., & Zonta, N. (1991). Neurotransmitter amino acid variations in striatum of rats exposed to 50 Hz electric fields.Biochimica et Biophysica Acta, 1075, 1–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, R.J. A review of neuroendocrine and neurochemical changes associated with static and extremely low frequency electromagnetic field exposure. Integrative Physiological and Behavioral Science 28, 57–75 (1993). https://doi.org/10.1007/BF02691200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02691200

Keywords

Navigation