Skip to main content
Log in

Footprint study of ultrasonic wedge-bonding with aluminum wire on copper substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of the process parameters of ultrasonic power and normal bonding force on bond formation at ambient temperatures have been investigated with scanning electron microscopy (SEM) and energy-dispersive x-ray (EDX) analysis. A model was developed based on classical microslip theory1 to explain the general phenomena observed in the evolution of bond footprints left on the substrate. Modifications to the model are made due to the inherent differences in geometry between ball-bonding and wedge-bonding. Classical microslip theory describes circular contacts undergoing elastic deformation. It is shown in this work that a similar microslip phenomenon occurs for elliptical wire-to-flat contacts with plastically deformed wire. It is shown that relative motion exists at the bonding interface as peripheral microslip at lower powers, transitioning into gross sliding at higher powers. With increased normal bonding forces, the transition point into gross sliding occurs at higher ultrasonic bonding powers. These results indicate that the bonding mechanisms in aluminum wire wedge-bonding are very similar to those of gold ball-bonding, both on copper substrate. In ultrasonic wedge-bonding onto copper substrates, the ultrasonic energy is essential in forming bonding by creating relative interfacial motion, which removes the surface oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Mindlin, Trans. ASME, Ser. E, J. Appl. Mech. 16, 259 (1949).

    Google Scholar 

  2. G.G. Harman, Wire Bonding in Microelectronics—Materials, Processes, Reliability, and Yield, 2nd ed., McGraw-Hill. New York, NY, 1997.

    Google Scholar 

  3. V.H. Winchell and H.M. Berg, IEEE Trans. Components, Hybrids Manufacturing Technol. CHMT-1, 211 (1978).

    Article  CAS  Google Scholar 

  4. G.G. Harman and K.O. Leedy, 10th Annual Proc. Reliability Physics (New York: IEEE, 1972), pp. 49–56.

    Google Scholar 

  5. I. Lum, J.P. Jung, and Y. Zhou, Metall. Mater. Trans. A 36A, 1279 (2005).

    Article  CAS  Google Scholar 

  6. C.W. Tan and A.R. Daud, J. Mater. Sci.: Mater. Electron. 13, 309 (2002).

    Article  CAS  Google Scholar 

  7. N. Srikanth et al., Thin Solid Films 462–463, 339 (2004).

    Article  Google Scholar 

  8. N. Murdeshwar and J.E. Krzanowski, Metall. Mater. Trans. A 28A, 2663 (1997).

    Article  CAS  Google Scholar 

  9. C.L. Yeh and Y.S. Lai, Microelectron. Reliability 45, 371 (2005).

    Article  Google Scholar 

  10. D. Degryse, B. Vandevelde, and E. Beyne, IEEE Trans. Components Packaging Technol. 27, 643 (2004).

    Article  CAS  Google Scholar 

  11. J.E. Krzanowski, IEEE Trans. Components Hybrids Manufacturing Technol. 13, 176 (1990).

    Article  Google Scholar 

  12. G.G. Harman and J. Albers, IEEE Trans. Parts, Hybrids Packaging PHP-13, 406 (1977).

    Article  CAS  Google Scholar 

  13. J.E. Krzanowski and N. Murdeshwar, J. Electron. Mater. 19, 919 (1990).

    Article  Google Scholar 

  14. Y. Takahashi et al., IEEE Trans. Components Hybrids Manufacturing Technol. Part A 19, 1996.

  15. H.A. Mohamed and J. Washburn, Welding J. 54, 302 (1975).

    Google Scholar 

  16. B. Langenecker, IEEE Trans. Sonics Ultrasonics SU-13 (1966), pp. 1–8.

    Google Scholar 

  17. Y. Zhou, X. Li, and N.J. Noolu, IEEE Trans. Components Packaging Technol. 28 (4) 810 (2005).

    Article  Google Scholar 

  18. M. Mayer (Ph.D. Dissertation 13685, Swiss Federal Institute of Technology (ETH), Zurich, 2002).

    Google Scholar 

  19. F. Osterwald, K.D. Lang, and H. Reichl, (Reston, VA: ISHM, 1996), p. 426–431.

  20. ASME Wear Control Handbook, 1980.

  21. M. Mayer and J. Schwizer, Proc. IMAPS 2002, Proc. SPIE (Bellingham, WA: The International Society for Optical Engineering, 2002), vol. 4931, pp. 626–631.

    Google Scholar 

  22. K.L. Johnson, Proc. R. Soc. A 230, 531 (1954).

    Article  Google Scholar 

  23. Z.N. Liang, F.G. Kuper, and M.S. Chen, Microelectron. Reliability 38, 1287 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lum, I., Mayer, M. & Zhou, Y. Footprint study of ultrasonic wedge-bonding with aluminum wire on copper substrate. J. Electron. Mater. 35, 433–442 (2006). https://doi.org/10.1007/BF02690530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02690530

Key words

Navigation