Skip to main content
Log in

Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex

  • Papers
  • Published:
Integrative Physiological & Behavioral Science Aims and scope Submit manuscript

Abstract

The basolateral amygdaloid complex (BLA) and orbitofrontal cortex (OFC) share extensive reciprocal connections, and interactions between these regions likely contribute to both mnemonic and affective processes. The present study examined the potential differential contributions of the BLA and OFC to performance of an olfactory discrimination task that incorporates auditory conditioned reinforcement and to expression of immediate post-shock freezing behavior. Damage to the BLA had little effect on performance of the conditioned reinforcement task but abolished immediate post-shock freezing behavior. In contrast, damage to OFC resulted in both a mild but significant performance decrement in the conditioned reinforcement task and a significant attenuation of immediate post-shock freezing behavior. These findings suggest that immediate post-shock freezing behavior is likely critically dependent upon interactions between the BLA and OFC. However, although mnemonic processes underlying accurate performance of the conditioned reinforcement task might be supported by OFC in part, such processes are independent of either the BLA or interactions between these two regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burns, L., Everitt, B., & Robbins, T. (1999). Effects of excitotoxic lesions of the basolateral amygdala on conditional discrimination learning with primary and conditioned reinforcement. Behav Brain Res. 100: 123–133.

    Article  PubMed  Google Scholar 

  • Cador, M., Robbins, T., & Everitt, B. (1989). Involvement of the amygdala in stimulus-reward associations Interactions with the ventral striatum. Neuroscience, 30(1): 77–86.

    Article  PubMed  Google Scholar 

  • Carmichael ST. Price JL (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol, 363(4): 615–641.

    Article  PubMed  Google Scholar 

  • Cousens, G., & Otto, T. (1998). Both pre—and posttraining excitotoxic lesions of the basolateral amygdala abolish the expression of olfactory and contextual fear conditioning. Behav Neuroscience, 112(5): 1092–1103

    Article  Google Scholar 

  • Eichenbaum, H.; Shedlack, K., & Eckmann, K. (1980). Thalamocortical mechanisms in odor-guided behavior. Brain Behav Evol, 17: 255–75.

    Article  PubMed  Google Scholar 

  • Everitt, B., Cador, M., & Robbins, T. (1989). Interactions between the amygdala and ventral striatum in stimulus-reward associations: Studies using a second-order schedule of sexual reinforcement. Neuroscience, 30(1):63–75.

    Article  PubMed  Google Scholar 

  • Everitt, B., Morris, K., O’Brien, A., & Robbins, T. (1991). The basolateral amygdala-ventral striatal system and conditioned place preference: Further evidence for limbic-striatal interactions underlying reward-related processes. Neuroscience, 42(1): 1–18.

    Article  PubMed  Google Scholar 

  • Gaffan, D., & Harrison, S. (1987). Amygdalectomy and disconnection in visual learning for auditory conditioned reinforcement. J Neuroscience, 7(8): 2285–92.

    Google Scholar 

  • Gallagher, M., McMahan, R., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. J Neuroscience, 19(15): 6610–4.

    Google Scholar 

  • Gewirtz, J., & Davis, M. (1998). Second-order fear conditioning prevented by blocking NMDA receptors in the amygdala. Nature, 388(6641): 471–4.

    Article  Google Scholar 

  • Groenwegen, H., Wright, C., Beijer, A., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. Annals NY Acad Sciences, 49–65.

  • Hatfield, T., Han, J., Conley, M., Gallagher, M., & Holland, P. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects J Neuroscience, 16(16): 5256–65.

    Google Scholar 

  • Holland, P. (1998). Amount of training affects associatively-activated event representation. Neuropharmacology, 37: 461–469.

    Article  PubMed  Google Scholar 

  • Krettek JE., Price JL. (1977). Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. [Journal Article] J Comp Neurol, 172(4): 687–722.

    PubMed  Google Scholar 

  • Liang, KC. McGaugh JL. Martinez JL. Jr. Jensen RA. Vasquez BJ Messing RB. (1991). Post-training amygdaloid lesions impair retention of an inhibitory avoidance response. Behav Brain Res, 4(3): 237–49.

    Article  Google Scholar 

  • Mackintosh, N. (1974). The psychology of animal learning. London: Academic Press.

    Google Scholar 

  • Malkova, L., Gaffan, D., & Murray, E. (1997). Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory conditioned reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neuroscience, 17(15): 6011–20.

    Google Scholar 

  • Maren, S. (1999). Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. J. Neurosci., 19: 8696–8703.

    PubMed  Google Scholar 

  • Maren, S., Aharonov, G., & Fanselow, M. (1996). Retrograde abolition of conditional fear after excitotoxic lesions of the basolateral amygdala of rats: Absence of a temporal gradient. Behav Neuroscience, 110: 718–26.

    Article  Google Scholar 

  • Mogenson, G., Jones, D., & Yim, C. (1980). From motivation to action: Functional interface between the limbic system and the motor system. Progrees Psychobiol, 14: 60–97.

    Google Scholar 

  • Otto, T., & Eichenbaum, H. (1992). Complimentary roles of the orbital prefrontal cortex and the perirhinalentorhinal cortices in an odor-guided delayed-nonmatching-to-sample task. Behav Neuroscience, 106(5): 762–75.

    Article  Google Scholar 

  • Otto, T., & Garutto, D. (1997). Rhinal cortex lesions impair simultaneous olfactory discrimination learning in rats. Behav Neuroscience, 111(5): 1146–50.

    Article  Google Scholar 

  • Parkinson JA. Crofts HS. McGuigan M. Tomic DL. Everitt BJ. Roberts AC (2001). The role of the primate amygdala in conditioned reinforcement. J Neuroscience, 21(19): 7770–80.

    Google Scholar 

  • Porrino LJ, Crane AM, Goldman-Rakic PS (1985). Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol, 198(1):121–36.

    Article  Google Scholar 

  • Price, JL, Russchen, FT, & Amaral, DG (1987). The limbic region: II: the amygdaloid complex. In: BJorklund, A, Hokfelt, T, & Swanson, LW, editors. Handbook of Chemical Neuroanatomy: Integrated Systems of the CNS, Part 1, vol. 5. Amsterdam: Elsevier Science Publishers, 279–388.

    Google Scholar 

  • Schoenbaum, G., Chiba, A., & Gallagher, M. (1998). Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience, 1(2): 155–9.

    Article  PubMed  Google Scholar 

  • Schoenbaum, G., Chiba, A., & Gallagher, M. (1999). Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neuroscience, 19(5): 1876–84.

    Google Scholar 

  • Schoenbaum, G., Nugent, S.L., Saddoris, M.P., & Setlow, B. (2002). Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations.Neuroreport, 13(6), 885–90.

    Article  PubMed  Google Scholar 

  • Setlow, B., Gallahger, M., & Holland, P.C. (2002). The basolateral complex of the amygdala is necessary for the acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning.European Journal of Neuroscience, 15, 1841–53.

    Article  PubMed  Google Scholar 

  • Skinner, B. (1966). The Organization of Behavior. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Whitelaw RB, Markou, A, Robbins, TW, Everitt, BJ (1991). Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology. 127(3): 213–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Otto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cousens, G.A., Otto, T. Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex. Integrative Physiological & Behavioral Science 38, 272–294 (2003). https://doi.org/10.1007/BF02688858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688858

Keywords

Navigation