Consciousness and biological order: Toward a quantum theory of life and its evolution

  • Amit Goswami
Investigation of Consciousness

Abstract

Biological order is discussed within the context of the idealist interpretation of quantum mechanics. A quantum mechanism is proposed for quantum speciation and for quantum evolution, in general. It is shown that an extension of neo-Darwinism to include quantum evolution via a quantum mechanism can resolve some of the recent controversies that have rattled evolution theory. It is pointed out that the quantum approach has the further benefit of giving a straightforward insight into the nature of life itself. Experimental support for some aspects of the theory is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspect, A., Dalibard, J., and Roger, G. (1982). Experimental test of Bell inequalities using time-varying analyzers.Physical Review Letters 49: 1804–06.CrossRefGoogle Scholar
  2. Blood, C. (1993). On the relation of the mathematics of quantum mechanics to the perceived physical universe and free will, preprint, Rutgers University, Camden, N. J.Google Scholar
  3. Bohr, N. (1958).Atomic Physics and Human Knowledge. N.Y.: Wiley.Google Scholar
  4. Cairns, J., Overbaugh, J., and Miller, J. H. (1988). The Origin of Mutants.Nature 335: 142–145.PubMedCrossRefGoogle Scholar
  5. Davies, P. (1989).The Cosmic Blueprint N.Y.: Simon and Schuster.Google Scholar
  6. Dobzhansky, T. (1967).The Biology of Ultimate Concern. N.Y.: New American Library.Google Scholar
  7. Einstein, A., Podolsky, B., Rosen, N. (1935). Can Quantum Mechanical Description of Reality Be Considered Complete?Physical Review 47: 777–780.CrossRefGoogle Scholar
  8. Elsasser, W. M. (1981). Principles of a new biological theory: A summary.J. Theor. Biol. 89: 131–150.PubMedCrossRefGoogle Scholar
  9. Elsasser, W. M. (1982). The other side of molecular biology.J. Theor. Biol. 96: 67–76.PubMedCrossRefGoogle Scholar
  10. Eldredge, N. and Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. InModels in Paleontology, ed. T. J. M. Schopf. San Francisco: Freeman.Google Scholar
  11. Feynman, R. P. (1982). Simulating physics with computers.International Journal of Theoretical Physics 21: 467–488.CrossRefGoogle Scholar
  12. Flake, R. H. and Grant, V. (1974). An analysis of the cost-of-selection concept.Proc. Nat. Acad. Sci. USA 71: 3716–3720.PubMedCrossRefGoogle Scholar
  13. Frolich, H. (1968). Long range coherence and energy storage in biological systems.Int. J. of Quan. Chem 2: 641–649.CrossRefGoogle Scholar
  14. Goodwin, B. (1984). A relational or field theory of reproduction and its evolutionary implications. InBeyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm, ed. M.W. Ho and P. Saunders. London: Academic Press, pp. 219–242.Google Scholar
  15. Goswami, A. (1989). Idealistic interpretation of quantum mechanics.Physics Essays 2: 385–400.CrossRefGoogle Scholar
  16. Goswami, A. (1990). Consciousness in quantum physics and the mind-body problem.Journal of Mind and Behavior 11: 75–96.Google Scholar
  17. Goswami, A. (1993).The Self-Aware Universe: How Consciousness Creates the Material World. Los Angeles: Tarcher/Putnam.Google Scholar
  18. Goswami, A. (1996a). Creativity and the quantum: A unified theory of creativity,Creativity Research Journal 9: 47–61.CrossRefGoogle Scholar
  19. Goswami, A. (1996b). A quantum explanation of Sheldrake’s morphic resonance. (In press.)Google Scholar
  20. Goswami, A. and Todd, D. (1996). Is there conscious choice in directed mutation, phenocopies, and related phenomena? An answer based on quantum measurement theory. (In press.)Google Scholar
  21. Gould, S. J. (1980). Is a new and general theory of evolution emerging?Paleobiology 6: 119–130.Google Scholar
  22. Gould, S. J. and Eldredge, N. (1977). Punctuated equillibria: The tempo and mode of evolution reconsidered.Paleobiology 3: 115–151.Google Scholar
  23. Grant, V. (1977).Organismic Evolution. San Francisco: Freeman.Google Scholar
  24. Grant, V. (1985).The Evolutionary Process: A Critical Review of Evolutionary Theory. N.Y.: Columbia University Press.Google Scholar
  25. Ho, Mae-Wa-Wan. (1994).The Rainbow and the Worm: The Physics of Organisms. Singapore: World Scientific.Google Scholar
  26. Kimura, M. (1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.Google Scholar
  27. Lovelock, J. E. (1982).Gaia: A New Look at Life on Earth. Oxford: Oxford University Press.Google Scholar
  28. Lovelock, J. E. and Margulis, L. (1984). InGlobal Ecology: Toward a Science of the Biosphere, ed. Rambler, M. B. London: Jones and Bartlett.Google Scholar
  29. Mayr, E. (1954). Change of genetic environment and evolution. InEvolution as a Process, ed. J. Huxley, A. C. Hardy, and E. B. Ford. London: Allen Unwin.Google Scholar
  30. Mayr, E. (1963).Animal Species and Evolution. Cambridge, MA: Harvard University Press.Google Scholar
  31. Mayr, E. (1980). Some thoughts on the history of evolutionary synthesis. InThe Evolutionary Synthesis, ed. E. Mayr and W. B. Provine. Cambridge, MA: Harvard University Press.Google Scholar
  32. Mayr, E. (1988).Toward a New Philosophy of Biology. Cambridge, MA: Harvard University Press.Google Scholar
  33. Mitchell, M. and Goswami, A. (1992). Quantum mechanics for observer systems.Physics Essays 5: 526–529.CrossRefGoogle Scholar
  34. Prigogine, Ilya. (1980).From Being to Becoming. San Francisco: Freeman.Google Scholar
  35. Saunders, P. (1984). Development and evolution. InBeyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm, ed. M. W. Ho and P. Saunders. London: Academic Press, pp. 243–266.Google Scholar
  36. Schmidt, H. (1993). Observation of a psychokinetic effect under highly controlled conditions.Journal of Parapsychology 57: 51–372.Google Scholar
  37. Sheldrake, R. (1981).A New Science of Life. Los Angeles: Tarcher.Google Scholar
  38. Simpson, G. G. (1953).The Major Features of Evolution. N.Y.: Columbia University Press.Google Scholar
  39. Stanley, S. M. (1979).Macroevolution: Pattern and Process. San Francisco: Freeman.Google Scholar
  40. Stapp, S. P. (1993).Mind, Matter and Quantum Mechanics. N.Y.: Springer.Google Scholar
  41. Strohman, R. (1992). The forces of life. Preprint, University of California, Berkeley.Google Scholar
  42. Szilard, L. (1929). On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings.Zietschrft Fur Physik. 53: 840.CrossRefGoogle Scholar
  43. von Neumann, J. (1955).The Mathematical Foundations of Quantum Mechanics. Princeton: Princeton University Press.Google Scholar
  44. Wallas, G. (1926).The Art of Thought. N.Y.: Harcourt Brace.Google Scholar
  45. Wesson, R. (1993).Beyond Natural Selection. Cambridge, MA: The MIT Press.Google Scholar
  46. Wolpert, L. (1982). Pattern Formation and Change. InEvolution and Development, ed. J. T. Bonner. New York: Springer Verlag.Google Scholar
  47. Wright, S. (1960). Physiological genetics, ecology of populations, and natural selection. InEvolution After Darwin, Vol. 1, ed. S. Tax. Chicago: University of Chicago Press, pp. 429–476.Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • Amit Goswami
    • 1
  1. 1.Department of Physics, The Institute of Theoretical ScienceUniversity of OregonEugene

Personalised recommendations