Skip to main content
Log in

Effects of tetrazolium chloride concentration, O2, and cell age on dehydrogenase activity of Aspergillus niger

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of triphenyl tetrazolium chloride (TTC) concentration, cell age, and presence of O2 on the dehydrogenase activity of Aspergillus niger as measured by triphenyl formazan (TF) yield were investigated. The results indicated that increasing TTC concentration initially increased the TF yield and then decreased it. The maximum TF yield was observed at a TTC concentration of 30 g/L for young cells (4 d old) and 20 g/L for old cells (12 d old). Conducting the test under anaerobic conditions increased the TF yield. About 18% of the TF produced was converted back into TTC in the presence of oxygen. The relationship between dehydrogenase activity of A. niger (as measured by TF yield) and cell mass was found to be linear. A kinetic model describing the relationship between reaction rate (micromoles of TF formed per hour) and TTC concentration while accounting for substrate inhibition was developed, and the model constants were calculated. The optimum TTC-test conditions for dehydrogenase activity measurement of A. niger were a TTC concentration of 20 g/L, a pH of 9.0, a temperature of 55°C, an incubation time of 3 h, and anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berka, R. M., Dunn-Coleman, N., and Ward, M. (1992), in Aspergillus Biology and Industrial Applications, Bennett, J. W. and Klich, M. A., eds., Butterworth-Heinemann, Stoneham, MA.

    Google Scholar 

  2. Ray, B. (1996), Fundamental Food Microbiology, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Naidu, G. S. N. and Panda, T. (2003), Biochem. Eng. J. 16(1), 57–67.

    Article  CAS  Google Scholar 

  4. Pandey, A. (1992), Process Biochem. 27(2), 109–117.

    Article  CAS  Google Scholar 

  5. Stagg, C. M. and Feather, M. S. (1973), Int. J. Biochem. Biophys. Mol. Biol. 320(1), 64–72.

    CAS  Google Scholar 

  6. Brzeski, M. M. (1987), Infofish Int. 5(87), 38–40.

    Google Scholar 

  7. Lenhard, G. (1956), Z. Pflanzenernaehr. Dueng. Bodenkd 73, 1–11.

    Article  CAS  Google Scholar 

  8. Casida, L. E., Klein, D. A., and Santoro, T. (1964), Soil. Sci. 98, 371–376.

    Article  CAS  Google Scholar 

  9. Klein, D. A., Loh, T. C., and Goulding, R. L. (1971), Soil Biol. Biochem. 3, 385–387.

    Article  CAS  Google Scholar 

  10. Skujins, J. (1973), Bull. Ecol. Res. Committee 17, 235–241.

    CAS  Google Scholar 

  11. Casida, L. E. (1977), Appl. Environ. Microbiol. 34(6), 630–636.

    CAS  Google Scholar 

  12. Chendrayan, K., Adhya, T. K., and Sethunathan, N. (1979), Soil Biol. Biochem. 12, 271–273.

    Article  Google Scholar 

  13. Farini, A., Gigliotti, C., and Vandoni, M. V. (1988), Ann. Microbiol. Enzimol. 38, 223–229.

    CAS  Google Scholar 

  14. Chander, K. and Brookes, P. C. (1991), Soil Biol. Biochem. 23(10), 909–915.

    Article  CAS  Google Scholar 

  15. Rossel, D. and Tarradellas, J. (1991), Environ. Toxicol. Water Quality 6, 17–33.

    Article  CAS  Google Scholar 

  16. Friedel, J. K., Mölter, K., and Fischer, W. R. (1994), Biol. Fertil. Soils 18, 291–296.

    Article  CAS  Google Scholar 

  17. Gong, P. (1996), Soil Biol. Biochem. 29(2), 211–214.

    Article  Google Scholar 

  18. Lenhard, G., Nourse, L. D., and Schwartz, H. M. (1964), in Proceedings of the Second International Conference, Baars, J. K., ed., Tokyo 2, pp. 105–119.

  19. Muntean, V., Pasca, D., Crisan, R., Kiss, S., and Dragan-Bularda, M. (1999), Studia Universitatis Babes-Bolyai, Biologia 44(1–2), 199–207.

    Google Scholar 

  20. Sutherland, E. D. and Cohen, S. D. (1983), Phytopathology 73(11), 1532–1535.

    Article  Google Scholar 

  21. El-Hamalawi, Z. A. and Erwin, D. C. (1986), Physiol. Biochem. 76(5), 503–507.

    CAS  Google Scholar 

  22. An, Z.-Q. and Hendrix, J. W. (1988), Mycologia 80(2), 259–261.

    Article  Google Scholar 

  23. Jiang, J. and Erwin, D. C. (1990), Mycologia 82(1), 107–113.

    Article  Google Scholar 

  24. Meier, R. and Charvat, I. (1993), Am. J. Botany 80(9), 1007–1015.

    Article  CAS  Google Scholar 

  25. Walley, F. L. and Germida, J. J. (1995), Mycologia 87(2), 273–279.

    Article  Google Scholar 

  26. Stentelaire, C., Antoine, N., Cabrol, C., Feron, G., and Durand, A. (2001), Enzyme Microb. Technol. 29(8–9), 560–566.

    Article  CAS  Google Scholar 

  27. Ghaly, A. E., Kok, R., and Ingrahm, J. M. (1989), Appl. Biochem. Biotechnol. 22, 59–78

    Article  CAS  Google Scholar 

  28. Ghaly, A. E. and Ben-Hassan, R. M. (1993), Appl. Biochem. Biotechnol. 43, 77–92.

    CAS  Google Scholar 

  29. Ghaly, A. E. and El-Taweel, A. A. (1995), Trans. ASAE 38(4), 1113–1120.

    CAS  Google Scholar 

  30. Griebe, T., Schaule, G., and Wuertz, S. (1997), J. Ind. Microbiol. Biotechnol. 19, 118–122.

    Article  CAS  Google Scholar 

  31. Mahmoud, N. S. (2005), PhD thesis, Dalhousie University, Halifax, Nova Scotia, Canada.

  32. Altman, F. P. (1969), Histochemie 19, 363–374.

    Google Scholar 

  33. Tengerdy, R. P., Nagy, J. G., and Martin, B. (1967), Appl. Microbiol. 15(4), 954, 955.

    CAS  Google Scholar 

  34. Shuler, M. L. and Kargi, F. (1992), Bioprocess Engineering: Basic Concepts, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  35. Ohara, M. T. and Saito, T. (1995), J. AOAC Int. 78(6), 1525–1529.

    CAS  Google Scholar 

  36. American Public Health Association. (1967), Standard Methods for the Examination of Dairy Products, American Public Health Association, Washington, DC.

    Google Scholar 

  37. Doran, P. M. (1995), Bioprocess Engineering Principles, Academic Press Limited, London. UK.

    Google Scholar 

  38. Blanch, H. W. and Clark, D. S., (1997), Biochemical Engineering, Marcel Dekker, New York.

    Google Scholar 

  39. Andrews, J. F. (1968), Biotechnol. Bioeng. 10(6), 707–723.

    Article  CAS  Google Scholar 

  40. Edwards, V. H. (1970), Biotechnol. Bioeng. 12(5), 679–712.

    Article  CAS  Google Scholar 

  41. Han, K. and Levenspiel, O. (1988), Biotechnol. Bioeng. 32(4), 430–437.

    Article  CAS  Google Scholar 

  42. Loung, J. H. (1987), Biotechnol. Bioeng. 29(2), 242–248.

    Article  Google Scholar 

  43. Ghaly, A. E. and El-Taweel, A. A. (1994), Biomass Bioenergy 6(6), 465–478.

    Article  CAS  Google Scholar 

  44. Ghaly, A. E. and Ben-Hassan, R. M. (1995), Appl. Biochem. Biotechnol. 5(1), 79–92.

    Google Scholar 

  45. Tango, S. A. and Ghaly, A. E. (1999), Trans. ASAE 42(6), 1791–1800.

    CAS  Google Scholar 

  46. Ross, D. J. (1971), Soil Biol. Biochem. 3, 97–110.

    Article  CAS  Google Scholar 

  47. Trevors, J. T. (1984), Soil Biol. Biochem. 16(6), 673–674.

    Article  CAS  Google Scholar 

  48. Altman, F. P. (1976), Prog. Histochem. Cytochem. 9, 1–56.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaly, A.E., Mahmoud, N.S. Effects of tetrazolium chloride concentration, O2, and cell age on dehydrogenase activity of Aspergillus niger . Appl Biochem Biotechnol 136, 207–222 (2007). https://doi.org/10.1007/BF02686018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686018

Index Entries

Navigation