Skip to main content
Log in

Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Summary

An extracellular lipase was produced by Bacillus coagulans by solid-state fermentation. Solid waste from melon was used as the basic nutrient source and was supplemented with olive oil. The highest lipase production (78,069 U/g) was achieved after 24h of cultivation with 1% olive oil enrichment. Enzyme had an optimal activity at 37°C and pH 7.0, and sodium dodecyl sulfate increased lipase activity. NH 4NO3 increased enzyme production, whereas organic nitrogen had no effect. The effect of the type of carbon sources on lipolytic enzyme production was also studied. The best results were obtained with starch and maltose (148,932 and 141,629 U/g, respectively), whereas a rather low enzyme activity was found in cultures grown on glucose and galactose (approx 118,769 and 123,622 U/g, respectively). Enzyme was inhibited with Mn+2 and Ni+2 by 68 and 74%, respectively. By contrast, Ca+2 enhanced enzyme production by 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, T., Zhang, M., Wang, B., Ying, C., and Deng, L. (2003), Process Biochem. 39, 459–465.

    Article  CAS  Google Scholar 

  2. Gombert, A. K., Pinto, A. L., Castilho, L. R., and Freire, D. M. G. (1999), Process Biochem. 35, 85–99.

    Article  CAS  Google Scholar 

  3. Sugiura, M. (1984), in Lipases, Brogström, B. and Brogström, H. L., eds., Elsevier Amsterdam, pp. 505–523.

    Google Scholar 

  4. Costas, M., Devie, F. J., and Longo, M. A. (2004), Process Biochem. 39, 2109–2114.

    Article  CAS  Google Scholar 

  5. Rapp, P. Backhaus, S. (1992), Enzyme Microb. Technol. 14, 938–943.

    Article  CAS  Google Scholar 

  6. Oh, B. C., Kim, H. K., Lee, J. K., Kang, S. C., and Oh, T. K. (1999), EMS Microbiol. Lett. 179, 385–392.

    Article  CAS  Google Scholar 

  7. Essamri, M., Deyris, V., and Comeau, L. (1998), J. Biotechnol. 60, 97–103.

    Article  CAS  Google Scholar 

  8. Rua, M. L., Schmidt-Dannert, C., Wahl, S., Sparauer, A., and Schmis, R. D. (1997), J. Biotechnol. 56, 89–102.

    Article  CAS  Google Scholar 

  9. Pandey, A. (2003), Biochem. Eng. J. 13 81–84.

    Article  CAS  Google Scholar 

  10. Soccol, C. R. and Vandenberghe, L. P. S. (2003), Biochem. Eng. J. 13, 205–218.

    Article  CAS  Google Scholar 

  11. Imamura, S. K. and Kituara, S. (2000), J. Biochem. 127, 419–425.

    CAS  Google Scholar 

  12. Joyce, J. and Muraleedhara, K. (1999), Indian J. Exp. Biol. 37, 1231–1217.

    Google Scholar 

  13. Sharma, R., Soni, S. K., Vohra, R.M., Gupta, L. K., and Gupta, J. K. (2002), Process Biochem. 37, 1075–1084.

    Article  CAS  Google Scholar 

  14. Lindsay, D., Brozel, V. S., Mostert, J. F., and von Holy, A. (2000), J. Food Microbiol. 54, 49–62.

    Article  CAS  Google Scholar 

  15. Nthangeni, M. B., Patterton, H. G., van Tonder, A., Verger, W. P., and Litthauer, D., (2001), Enzyme Microb. Technol. 28, 705–712.

    Article  CAS  Google Scholar 

  16. Lee, D. W., Koh, Y. S., Kim, K. J., et al. (1999), FEMS Microbiol. Lett. 179 (2), 393–400.

    Article  CAS  Google Scholar 

  17. Marek, A. and Bednarski, W. (1996), Biotechnol. Lett. 18, 1155–1160.

    Article  CAS  Google Scholar 

  18. Maia, M. M. M., Heasley, A., Camargo de Morais, M. M., Melo, E. H. M., Morais, M. A. Jr., and Ledingham, W. M. (2001), Bioresour. Technol. 76, 23–27.

    Article  CAS  Google Scholar 

  19. Choi, Y. J. and Lee, B. H. (2001), Bioprocess Biosyst. Eng. 24, 59–63.

    Article  CAS  Google Scholar 

  20. Espinosa, E., Sanchez, S., and Farres, A. (1990), Biotechnol. Lett. 12, 209–214.

    Article  CAS  Google Scholar 

  21. Muralidhar, R. V., Chirumamila, R. R., Marchant, R., and Nigam, P. (2001), Biochem. Eng. J. 9, 17–23.

    Article  CAS  Google Scholar 

  22. Ferrer, P. and Sola, C. (1992), Appl. Microbiol. Biotechnology 37, 737–741.

    CAS  Google Scholar 

  23. Kamini, N. R., Mala, J. G. S., and Puvanakrishnan, R. (1998), Process Biochem. 33, 505–511.

    Article  CAS  Google Scholar 

  24. Verkata, R., Kunthala, P., and Lakshmanan, C. M. (1993), Process Biochem. 28, 391–395.

    Article  Google Scholar 

  25. Mahadik, N. D., Bastawde, K. B., Puntambekar, U. S., Khire, J. M., and Gokhale, D. V. (2004), Process Biochem. 39, 2031–2034.

    Article  CAS  Google Scholar 

  26. Dalmau, E., Mostesinos, J. L., Lotti, M., and Casas, C. (2000), Enzyme Microb. Technol. 26, 657–663.

    Article  CAS  Google Scholar 

  27. Conzo, G. and Revah, S. (1999), Bioresour. Technol. 70, 173–180.

    Article  Google Scholar 

  28. Gray, C. J. (1995), in Thermostability of Enzymes, Gupta, M. N., ed., Narosa, New Delhi, India, pp. 124–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zübeyde Baysal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkan, H., Baysal, Z., Uyar, F. et al. Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Appl Biochem Biotechnol 136, 183–192 (2007). https://doi.org/10.1007/BF02686016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686016

Index Entries

Navigation