Biological Trace Element Research

, Volume 115, Issue 3, pp 243–254

Anthropogenic impact of mercury accumulation in fish from the Rio Madeira and Rio Negro rivers (Amazonia)

  • José G. Dórea
  • Antonio C. Barbosa
Article

Abstract

Fish is an important concentrator of mono-methyl mercury and the main route to human contamination. We compared fish Hg bioaccumulation (within similar weight ranges) in two Amazonian river habitats during high-water seasons. The Rio Madeira has been greatly impacted by agriculture, alluvial gold extraction, and a hydroelectric reservoir, whereas the Rio Negro is much less affected by these human activities. The species at the top of the food web, Hoplias malabaricus (piscivorous; 80-668 ng Hg/g) and Cichla spp. (piscivorous; 42–747 ng Hg/g) showed the highest range of Hg concentrations. Nonpiscivorous species with comparable weight range, such as Potamorhina latior (detritivorous; 20–157 ng Hg/g) and Myleus torquatus (herbivorous; 2–182 ng Hg/g), had lower Hg concentrations. Triportheus elongatus (omnivorous; 5–350 ng Hg/g), with the lowest weight range, also showed a low range of Hg concentrations. Despite the Rio Madeira's higher sediment load as well as environmental impacts (deforestation, agriculture, hydroelectric reservoir, and alluvial gold mining) on natural Hg release, fish Hg bioaccumulation was no different between the two river habitats for nonpiscivorous species. In this small observational study only the species at the top of the food web (M. torquatus, Cichla spp, T. elongatus) showed higher mean Hg concentrations in the Rio Madeira than the dominantly wilderness habitat of the Rio Negro.

Index Entries

Amazonia inundation floodplain fish Hg gold mining Rio Negro Rio Madeira 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Barbosa, J. R. Souza, J. G. Dórea, W. Jardim, and P. Fadini, Mercury biomagnification in a tropical black water, the Rio Negro, Brazil, Arch. Environ. Contam. Toxicol. 45, 235–146 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    J. G. Dorea, A. C. Barbosa, J. R. Souza, and G. S. Silva, Fish-mercury bioaccumulation as a function of feeding behavior and hydrological cycles of the Rio Negro, Amazon, Comp. Biochem. Physiol. 142, 275–283 (2006).Google Scholar
  3. 3.
    P. M. Fearnside, Brazil's Samuel Dam: Lessons for hydroelectric development policy and the environment in environment in Amazonia, Environ. Manage. 35, 1–19 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    W. R. Bastos, J. P. Gomes, R. C. Oliveira, et al.,, Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil, Sci. Total Environ. 368, 344–351 (2006).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Roulet, M. Lucotte, N. Farella, et al., Effects of recent human colonization on the presence of mercury in Amazonian ecosystems, Water Air Soil Pollut. 112, 297–313 (1999).CrossRefGoogle Scholar
  6. 6.
    J. G. Dorea, Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations? Environ. Res. 92, 232–244 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    D. C. Kligerman, E. L. La Rovere, and M. A. Costa, Management challenges on smallscale gold mining activities in Brazil, Environ. Res. 87, 181–198 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    P. J. Lechler, J. R. Miller, L. D. Lacerda, et al., Elevated mercury concentrations in soils, sediments, water, and fish of the Madeira River Basin, Brazilian Amazon: a function of natural enrichment? Sci. Total Environ. 260, 87–96 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Maurice-Bourgoin, I. Quiroga, J. Chincheros, and P. Courau, Mercury distribution in waters and fishes of the upper Madeira rivers and mercury exposure to riparian Amazonia populations, Sci. Total Environ. 260, 73–86 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    M. D. Almeida, L. D. Lacerda, W. R. Bastos, and J. C. Herrmann, Mercury loss from soils following conversion from forest to pasture in Rondonia, Western Amazon, Brazil, Environ. Pollut. 137, 179–186 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    P. S. Fadini and W. F. Jardim, Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? Sci. Total Environ. 275, 71–82 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    AMAP, AMAP Assessment Report: Arctic Pollution Issues, Arctic Monitoring and Assessment Programme, AMAP, Oslo (1998).Google Scholar
  13. 13.
    V. St. Louis, J. W. M. Rudd, C. A. Kelly, et al., The rise and fall of mercury methylation in an experimental reservoir, Environ. Sci. Technol. 38, 1348–1358 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    J. R. Guimaráes, M. Roulet, M. Lucotte, and D. Mergler, Mercury methylation along a lake-forest transect in the Tapajós river floodplain, Brazilian Amazon: seasonal and vertical variations, Sci. Total Environ. 261, 91–98 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Viers, G. Barroux, M. Pinelli, et al., The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil), Sci. Total Environ. 339, 219–232 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    E. M. Latrubesse, J. C. Stevaux, and R. Sinha, Tropical rivers, Geomorphology 70, 187–206 (2005).CrossRefGoogle Scholar
  17. 17.
    CPM (Companhia de Pesquisa de Recursos Minerais), ServiÇo Geológico do Brasil: Perspectivas do Meio Ambiente do Brasil, CPRM, Rio de Janeiro (2002).Google Scholar
  18. 18.
    N. L. Chao, The fishery, diversity, and conservation of ornamental fishes in the Rio Negro Basin, Brazil: a review of Project Piaba (1989–99), in Conservation and Management of Ornamental Fish Resouces of the Rio Negro Basin, Amazonia, Brazil: Projeto Piaba, N. L. Chao, P. Petry, G. Prang, L. Sonneschien, and M. Tlusty, eds., EDUA, Manaus (2001).Google Scholar
  19. 19.
    A. C. Barbosa, A. A. Boischio, G. A. East, et al., Mercury contamination in the Brazilian Amazon. Environmental and occupational aspects, Water Air Soil Pollut. 80, 109–121 (1995).CrossRefGoogle Scholar
  20. 20.
    M. Roulet and R. Maury-Brachet, Le mercury dans les organismes aquatiques amazoniens, in Le Mercure en Amazonie, J. P. Carmouze, M. Lucotte, and A. Boudou, eds., Institut de Recherche pour le Developpment. Collection Expertise Collegiale, Paris, pp. 204–271 (2001).Google Scholar
  21. 21.
    O. Malm, J. R. D. Guimaraes, M. B. Castro, et al., Follow-up of mercury levels in fish, human hair and urine in the Madeira and Tapajos basins, Amazon, Brazil, Water Air Soil Pollut. 97, 45–51 (1997).Google Scholar
  22. 22.
    A. Boudou, R. Maury-Brachet, M. Coquery, G. Durrieu, and D. Cossa, Synergic effect of gold mining and damming on mercury contamination in fish, Environ. Sci. Technol. 39, 2448–2454 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    J. H. Mol and P. E. Ouboter, Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream, Conserv. Biol. 18, 201–214 (2004).CrossRefGoogle Scholar
  24. 24.
    H. D. Kehrig and O. Malm, Methylmercury in fish as a tool for understanding the Amazon mercury contamination, Appl. Organomet. Chem. 13, 689–696 (1999).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • José G. Dórea
    • 1
  • Antonio C. Barbosa
    • 2
  1. 1.Faculdade de Ciéncias da SaúdeUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations