Skip to main content
Log in

How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhy, drazone (MGBG) and the phenylalamine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250–1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roses, O. C., Villamil, E. E., and García Fernandez, J. C. (1988) Fitoterapia 59, 120–127.

    Google Scholar 

  2. Pitta-Alvarez, S. I., and Giulietti, A. M. (1995), In Vitro Cell. Dev. Biol. Plant 31(4), 215–220.

    Article  Google Scholar 

  3. Pitta-Alvarez, S. I., and Giulietti, A. M. (1999), Plant Cell Tissue Organ Cult. 59, 31–38.

    Article  CAS  Google Scholar 

  4. Pitta-Alvarez, S. I., Marconi, P. L., and Giulietti, A. M. (2003) In Vitro Cell. Dev. Biol. Plant 39, 640–644.

    Article  CAS  Google Scholar 

  5. Lockwood G. B., and Essa, A. K. (1984), Plant Cell Rep. 3, 109–111.

    Article  CAS  Google Scholar 

  6. Walton, N. J., Robins, R. J., and Peerless, A. C. J. (1990) Plant Sci. 54, 125–131.

    Article  Google Scholar 

  7. Moyano, E., Jouhikainen, K., Tammela, P., et al. (2003) J. Exp. Bot. 54 (381), 203–211.

    Article  CAS  Google Scholar 

  8. Zhang, L. Ding, R., Chai, Y., et al. (2004), PNAS 101(17), 6786–6791.

    Article  CAS  Google Scholar 

  9. Lee, O. S., Kang, Y. M., Jung, H. Y., et al. (2005) In Vitro Cell. Dev. Biol. Plant 41 (2), 167–172.

    Article  CAS  Google Scholar 

  10. Bagni, N., and Torrigiani P. (1992), in Progress in Plant Growth Regulation, Karssen, C. M., Van Loon, L. C. and Vreugdenhil, D., eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 264–275.

    Google Scholar 

  11. Galston, A. W., and Kaur-Sawhney, R. (1995), in Rlant Hormones: Physiology, Biochemistry, and Molecular Biology, Davies, P. J., ed. Kluwer Academic, Norwell, MA. pp 158–178.

    Google Scholar 

  12. Paschalidis, K. A., and Roubelakis-Angelakis, K. A. (2005) Plant Physiol. 138 (1), 142–152.

    Article  CAS  Google Scholar 

  13. Marton, L. J. and Morris, D. R. (1987), in Inhibition of Polyamine Metabolism: Bilogical Significance and Basis for New Therapies, McGann, P. P., Pegg, A. E., and Sjoerdsma, A., eds., Academic, New York, pp. 79–105.

    Google Scholar 

  14. Athel Cornish-Bowden (2004) Fundamentals of Enzyme Kinetics, 3rd ed., Cornish-Bowden, A., ed. Portland Press, London, UK.

    Google Scholar 

  15. Godoy-Hernandez, G. G., and Loyola-Vargas, V. M. (1994) Plant Cell Rep. 10, 537–540.

    Google Scholar 

  16. Brincat, M., Gibson, D. M., and Shuler, M. L. (2002) Biotechnol. Prog. 18(6), 1149–1156.

    Article  CAS  Google Scholar 

  17. Gamborg, O. L., Miller, R. A., and Ojima, K. (1968), Exp. Cell. Res. 50, 151–158.

    Article  CAS  Google Scholar 

  18. Parr, A. J., Payne, J., Eagle, J., Chapman, B., Robins, R. J., and Rhodes, M. J. C. (1990). Phytochemistry 29, 2545–2550.

    Article  CAS  Google Scholar 

  19. Mano, Y., Nobeshima, S., Matsui, C., and Ohkama, H. (1986), Agric. Biol. Chem. 50, 2715–2722.

    CAS  Google Scholar 

  20. Tukey, J. W. (1953), Trans. NY Acad. Sci. Ser. 16, 88–97.

    CAS  Google Scholar 

  21. Palazón, J., Moyano E., Cusidó, R. M., Bonfill, M., Oksman-Caldentey, K.-M., and Piñol, M. T. (2003), Plant Sci. 165, 1289–1295.

    Article  CAS  Google Scholar 

  22. Hibi, N., Fujita, T., Hatano, M., Hashimoto, T., and Yamada, Y. (1992) Plant Physiol. 100, 826–835.

    CAS  Google Scholar 

  23. Liu, H., Liu, Y., Yu, B., Liu, Z., and Zhang W. (2004) J. Plant Growth Regul. 23 (2), 56–165.

    Article  CAS  Google Scholar 

  24. Roy, P., Niyogi, K., SenGupta, D. N., and Ghosh, B. (2005), Plant Sci. 168 (3), 583–591.

    Article  CAS  Google Scholar 

  25. Hashimoto, T., Mitani, A., and Yamada, Y. (1990), Plant Physiol. 93(1), 216–221.

    Article  CAS  Google Scholar 

  26. Goldthwaite, J. J. (1990), in Plant Hormones and Their Role in Plant Growth and Development, Davies, P. J., ed., Kluwer Academic, Dordrecht The Netherlands pp. 553–573.

    Google Scholar 

  27. Federico, R., and Angelini, R. (1986), Planta 167, 300–302.

    Article  CAS  Google Scholar 

  28. Davin, L. B., and Lewis, N. G. (1992), in Phenolic Metabolism in Plants, Stafford, H. A. and Ibrahim, R. K., eds., Plenum, New York, pp. 325–375.

    Google Scholar 

  29. Medina-Bolivar, F., and Flores, H. E. (1995), Plant Physiol. 108, 1553–1560.

    CAS  Google Scholar 

  30. Biondi, S., Mengoli, M., Mott, D., and Bagni, N. (1993) Plant Physiol. Biochem. 31, 51–58.

    CAS  Google Scholar 

  31. Ben-Hayyim, G., Martin-Tanguy, J., and Tepfer, D. (1996), Physiol. Plant. 96, 237–243.

    Article  CAS  Google Scholar 

  32. Kende, H. K., and Zeevart, J. A. D. (1997), Plant Cell 9, 1197–1210.

    Article  CAS  Google Scholar 

  33. Lee, T. M. (1997), Plant Sci. 122, 111–117.

    Article  CAS  Google Scholar 

  34. Mathesius, U., Schalman, H. R. M., Spaink, H. P., Sautter, C., Rofle, B. G., and Djordjevic, M. A. (1998), Plant J. 14, 23–34.

    Article  CAS  Google Scholar 

  35. Hummel, I., Couée, I., El Amrani, A., Martin-Tanguy, J., and Hennion, F. (2002), J. Exp. Bot. 53, 1463–1473.

    Article  CAS  Google Scholar 

  36. Couée, I., Hummel, I., Sulmon, C., Gouesbet, G., and El Amrani, A. (2004). Plant Cell Tissue Organ Cult. 76, 1–10.

    Article  Google Scholar 

  37. Yamada, Y., Yun, D. J., and Hashimoto, T. (1994), in Advances in Plant Biotechnology, Yu, D. D. and Furusaki, S., eds. Elsevier Science, Amsterdam: pp. 83–93.

    Google Scholar 

  38. Bensaddek, L., Gillet, F., Nava Saucedo, J., and Fliniaux, M.-A. (2001), Biotechnol. 85, 35–40.

    Article  CAS  Google Scholar 

  39. Pitta-Alvarez, S. I., Spollansky, T. C., and Giulietti, A. M. (2000), Enzyme Microb. Technol. 26, 252–258.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra I. Pitta-Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marconi, P.L., Alvarez, M.A. & Pitta-Alvarez, S.I. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production. Appl Biochem Biotechnol 136, 63–75 (2007). https://doi.org/10.1007/BF02685939

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685939

Index Entries

Navigation