Skip to main content
Log in

Biochemical properties of genetic recombinant xylanase II

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to overexpress the xylanase II gene of Trichoderma reesei in Escherichia coli and determine the characteristics of the recombinant enzyme. Recombinant xylanase II gene was constructed by ligating the cDNA of xylanase, obtained from reverse transcriptase-polymerase chain reaction, and fused with NusA protein of pET-431b plasmid. An Ni2+-NTA affinity column was used to further purify the recombinant xylanase II. The molecular mass of the recombinant enzyme measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approx 76 kDa (including 55 kDa of NusA and 21 kDa of xylanase II), and the isoelectric point and specific activity were 7.5 and 225 U/mg, respectively. The optimal reaction temperature and pH for the recombinant enzyme were 50°C and 4.0, respectively. The recombinant enzyme was stable at a pH range of 5.0–10.0 and maintained 95% residual activity after incubating at 30–35°C for 30 min. The kinetic parameters K M and V max of the recombinant xylanase II were 13.8 mg/mL and 336 μmol/(mg·min), respectively, using birchwood xylan as the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okazaki, M., Fujikawa, S., and Matsumoto, N. (1990), Bifidobact. Microflora 9, 77–86.

    Google Scholar 

  2. Hidaka, H., Tashiro, Y., and Eida T. (1991), Bifidobact. Microflora 10, 65–79.

    Google Scholar 

  3. Wada, K., Wattabe, J., Mitzutani, J., Suzuki, H., Kiriu, N., Hayakawak, C., and Yamaguchi, C. (1991), Bifidus 4, 135–140 (in Japanese).

    Google Scholar 

  4. Isehibashi, N. and Shimamura, S. (1993), Food Technol. 47, 126, 129, 130, 132–134, 136.

    Google Scholar 

  5. Delzenne, N. M., Kok, N., Fiordaliso, M. F., Deboyser, D. M., Goethals, F. M., and Roberfroid, M. B. (1993), Am. J. Clin. Nutr. 57, 820S.

    Google Scholar 

  6. Howard, M. D., Gordon, D. T., Garleb, K. A., and Kerley, M. S. (1995), J. Nutr. 125, 2604–2609.

    CAS  Google Scholar 

  7. Loo, J. V., Coussement, P., Leenheer, L. D., Hoebregs, H., and Smits, G. (1995), Food Sci. Nutr. 35, 525–552.

    Google Scholar 

  8. Mutai, M. (1978), N Food Ind. 20, 17–20.

    Google Scholar 

  9. Ohku, T. (1992), Süntory Limited report, Japan.

  10. Okazaki, M., Koda, H., Izumi, R., Fujikawa, S., and Matsumoto, N. (1991), Jpn. Soc. Nutr. Food Sci. 44, 41–44.

    CAS  Google Scholar 

  11. Chung, Y. C., Hsieh, C. P., and Chan, Y. C. (2002), Taiwanese Agric. Chem. Food Sci. 40, 377–384.

    CAS  Google Scholar 

  12. Chan, S. H., Chung, Y. C., Chang, C. T., and Chan, K. C. (2004) Taiwanese Agric. Chem. Food Sci. 42, 440–447.

    CAS  Google Scholar 

  13. Hsu, C. K., Liao, J. W., Chung, Y. C., Hsieh, C. P., and Chan, Y. C. (2004), Nutr. 134, 1523–1528.

    CAS  Google Scholar 

  14. Reilly, P. J. (1981), in Trends in the Biology of Fermentations for Fuels and Chemicals, Hollaender, A. E. and Robson, R., eds., Plenum, New York, pp. 111–129.

    Google Scholar 

  15. Mcdermid, K. P., Forsberg, C. W., and Mackenzie, C. R. (1990) Appl. Environ. Microbiol. 56, 3805–3810.

    CAS  Google Scholar 

  16. He, L., Bickerstaff, G. F., Paterson, A., and Buswell, J. A. (1993), Enzyme Microb. Technol. 15, 13–18.

    Article  CAS  Google Scholar 

  17. Arja, L., Matti, S. A., Nisse, K., Richard, F., and Maija, T. (2000), Biotechnol. Appl. Biochem. 31, 61–68.

    Article  Google Scholar 

  18. Törrönen, M. R. L., Messner, M. R., Gonzalez, R., Kalkkinen, N., Harkki, A., and Kubicek, C. P. (1992), Biotechnology 10, 1461–1465.

    Article  Google Scholar 

  19. Tenkanen, M., Puls, J., and Poutanen, K. (1992) Enzyme Microb. Technol. 14, 566–574.

    Article  CAS  Google Scholar 

  20. Lappalainen, A., Siika-Aho, M., Kalkkinen, N., Fagerstrom, R., and Tenkanen, M. (2000), Biotechnol. Appl. Biochem. 31, 61–68.

    Article  CAS  Google Scholar 

  21. Sambrook, J., Fritch, E. F., and Maniatis, T. (1989), Molecular Cloning, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  22. Hanahan, D. and Meselson, M. (1980), Gene 10, 63–67.

    Article  CAS  Google Scholar 

  23. Laemmli, U. K. (1970), Nature 227, 680–685.

    Article  CAS  Google Scholar 

  24. Wang, P., Mason, J. C., and Broda, P. J. (1993), Gen. Microbiol. 139, 1987–1993.

    CAS  Google Scholar 

  25. Ali, B. R. S., Romaniec, M. P. M., Hazlewood, G. P., and Freedman, R. B. (1995), Enzyme Microb. Technol. 17, 705–711.

    Article  CAS  Google Scholar 

  26. Smith, P., Krohn, R. I., Hermanson, G. T., et al. (1985), Anal. Biochem. 15, 76–85.

    Article  Google Scholar 

  27. Royer, J. C. and Nakas, J. P. (1989), in Forest and Crop Biotechnology, Progress and Prospects, Valentine, F. A., ed., Springer-Verlag, New York, pp. 363–381.

    Google Scholar 

  28. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  29. Lineweaver, H. and Burk, D. J. (1934), Am. Chem. Soc. 56, 658–666.

    Article  CAS  Google Scholar 

  30. Törrönen, A., Harkki, A., and Rouvinen, J. (1994), EMBO J. 13, 2493–2501.

    Google Scholar 

  31. Subramaniyan, S. and Prema, P. (2002), Crit. Rev. Biotechnol. 22, 33–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Chin Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, MY., Chang, CT. & Chung, YC. Biochemical properties of genetic recombinant xylanase II. Appl Biochem Biotechnol 136, 1–16 (2007). https://doi.org/10.1007/BF02685934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685934

Index Entries

Navigation