Skip to main content
Log in

Increased expression of caspase 2 in experimental and human temporal lobe epilepsy

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy (TLE) is often caused by a neurodegenerative brain insult that triggers epileptogenesis, and eventually results in spontaneous seizures, i.e., epilepsy. Understanding the mechanisms of cell death is a key for designing new drug therapies for preventing the neurodegeneration associated with TLE. Here, we investigated the expression of caspase 2, a protein involved in programmed cell death, during the course of epilepsy. We investigated caspase 2 expression in hippocampal samples derived from patients operated on for drug refractory TLE. To understand the evolution of altered-caspase 2 expression during the epileptic process, we also examined caspase 2 expression and activity in the rat hippocampus after status epilepticus-induced acute damage, during epileptogenesis, and after the onset of epilepsy. Caspase 2 expression was enhanced in the hippocampal neurons in chronic TLE patients. In rats, status epilepticus-induced caspase 2 labeling paralleled the progression of neurodegeneration. Proteolytic activation and cleavage of caspase 2 was also detected in the rat brain undergoing epileptogenesis. Our data suggest that caspase 2-mediated programmed cell death participates in the seizure-induced degenerative process in experimental and human TLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnemri E. S. (1997) Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J. Cell Biochem. 64, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Annunziato L., Amoroso S., Pannaccione A., et al. (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol. Lett. 139, 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y. (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403.

    Article  PubMed  CAS  Google Scholar 

  • Bengzon J., Mohapel P., Ekdahl C., and Lindvall O. (2002) Neuronal apoptosis after brief and prolonged seizures, in Do seizures damage the brain?, Sutula T. and Pitkänen A. eds., Elsevier, vol. 135, pp. 111–119.

  • Bergeron L., Perez G. I., Macdonald G., et al. (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12, 1304–1314.

    PubMed  CAS  Google Scholar 

  • Chang H. Y. and Yang X. (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64, 821–846.

    Article  PubMed  CAS  Google Scholar 

  • Cheung H. H., Kelly L. N., Liston P., and Korneluk R. G. (2006) Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: a role for the IAPs. Exp. Cell Res. 312, 2347–2357.

    Article  PubMed  CAS  Google Scholar 

  • Clark R. S., Kochanek P. M., Chen M., et al. (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821.

    PubMed  CAS  Google Scholar 

  • Cohen G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  • Crespel A., Coubes P., Rousset M. C., et al. (2002) Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res. 952, 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Desjardins P. and Ledoux S. (1998) Expression of ced-3 and ced-9 homologs in Alzheimer’s disease cerebral cortex. Neurosci. Lett. 244, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Dorr J., Bechmann I., Waiczies S., et al. (2002) Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain. J. Neurosci. 22, RC209.

    Google Scholar 

  • Duan H. and Dixit V. M. (1997) RAIDD is a new ‘death’ adaptor molecule. Nature 385, 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I., Lopez E., Blanco R., Rivera R., Krupinski J., and Marti E. (2000) Differential c-Fos and caspase expression following kainic acid excitotoxicity. Acta. Neuropathol. (Berl.) 99, 245–256.

    Article  CAS  Google Scholar 

  • Fountain N. B. and Lothman E. W. (1995) Pathophysiology of status epilepticus. J. Clin. Neurophysiol. 12, 326–342.

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa D. G. (2005) Prolonged seizures and cellular injury: Understanding the connection. Epilepsy Behav. 7, 3–11.

    Article  Google Scholar 

  • Fujikawa D. G., Itabashi H. H., Wu A., and Shinmei S. S. (2000a) Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 41, 981–991.

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa D. G., Shinmei S. S., and Cai B. (2000b) Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Gorter J. A., Goncalves Pereira P. M., van Vliet E. A., Aronica E., Lopes da Silva F. H., and Lucassen P. J. (2003) Neuronal cell death in a rat model for mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia 44, 647–658.

    Article  PubMed  Google Scholar 

  • Grutter M. G. (2000) Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10, 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Hellier J. L., Patrylo P. R., Buckmaster P. S., and Dudek F. E. (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 31, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Henshall D. C., Chen J., and Simon R. P. (2000a) Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J. Neurochem. 74, 1215–1223.

    Article  PubMed  CAS  Google Scholar 

  • Henshall D. C., Clark R. S., Adelson P. D., Chen M., Watkins S. C., and Simon R. P. (2000b) Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurology 55, 250–257.

    PubMed  CAS  Google Scholar 

  • Henshall D. C., Skradski S. L., Bonislawski D. P., Lan J. Q., and Simon R. P. (2001) Caspase-2 activation is redundant during seizure-induced neuronal death. J. Neurochem. 77, 886–895.

    Article  PubMed  CAS  Google Scholar 

  • Hermel E., Gafni J., Propp S. S., et al. (2004) Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ. 11, 424–438.

    Article  PubMed  CAS  Google Scholar 

  • Kalviainen R., Salmenpera T., Partanen K., Vainio P., Riekkinen P., and Pitkanen A. (1998) Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology 50, 1377–1382.

    PubMed  CAS  Google Scholar 

  • Kitamura Y., Shimohama S., Kamoshima W., et al. (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res. 780, 260–269.

    Article  PubMed  CAS  Google Scholar 

  • Kondratyev A., Selby D., and Gale K. (2002) Status epilepticus leads to the degradation of the endogenous inhibitor of caspase-activated DNase in rats. Neurosci. Lett. 319, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Kinoshita M., Noda M., Copeland N. G., and Jenkins N. A. (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev. 8, 1613–1626.

    Article  PubMed  CAS  Google Scholar 

  • Lewis D. A., Campbell M. J., and Morrison J. H. (1986) An immunohistochemical characterization of somatostatin-28 and somatostatin-281-12 in monkey prefrontal cortex. J. Comp. Neurol. 248, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Loscher W. (1997) Animal models of intractable epilepsy. Prog. Neurobiol. 53, 239–258.

    Article  PubMed  CAS  Google Scholar 

  • Love S., Barber R., Srinivasan A., and Wilcock G. K. (2000) Activation of caspase-3 in permanent and transient brain ischaemia in man. Neuroreport 11, 2495–2499.

    Article  PubMed  CAS  Google Scholar 

  • Mancini M., Machamer C. E., Roy S., et al. (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J. Cell Biol. 149, 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Mathern G. W., Babb T. L., Vickrey B. G., Melendez M., and Pretorius J. K. (1995) The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 118, 105–118.

    Article  PubMed  Google Scholar 

  • Mikkonen M., Soininen H., and Pitkanen A. (1997) Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. J. Comp. Neurol. 388, 64–88.

    Article  PubMed  CAS  Google Scholar 

  • Mikkonen M., Soininen H., Kalvianen R., et al. (1998) Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann. Neurol. 44, 923–934.

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z. and Esiri M. M. (1998) Neuronal cyclin expression in the hippocampus in temporal lobe epilepsy. Exp. Neurol. 150, 240–247.

    Article  PubMed  CAS  Google Scholar 

  • Nairismagi J., Grohn O. H., Kettunen M. I., Nissinen J., Kauppinen R. A., and Pitkanen A. (2004) Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy. Epilepsia 45, 1024–1034.

    Article  PubMed  Google Scholar 

  • Narkilahti S. and Pitkanen A. (2005) Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy. Neuroscience 131, 887–897.

    PubMed  CAS  Google Scholar 

  • Narkilahti S., Nissinen J., and Pitkanen A. (2003a) Administration of caspase 3 inhibitor during and after status epilepticus in rat: effect on neuronal damage and epileptogenesis. Neuropharmacology 44, 1068–1088.

    Article  PubMed  CAS  Google Scholar 

  • Narkilahti S., Pirttila T. J., Lukasiuk K., Tuunanen J., and Pitkanen A. (2003b) Expression and activation of caspase 3 following status epilepticus in the rat. Eur. J. Neurosci. 18, 1486–1496.

    Article  PubMed  Google Scholar 

  • Nicholson D. W. and Thornberry N. A. (1997) Caspases: killer proteases. Trends Biochem. Sci. 22, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Nissinen J., Large C. H., Stratton S. C., and Pitkanen A. (2004) Effect of lamotrigine treatment on epileptogenesis: an experimental study in rat. Epilepsy Res. 58, 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W., Collins R. C., and Sloviter R. S. (1986) Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol. 44, 857–877.

    PubMed  CAS  Google Scholar 

  • Olney J. W., Rhee V., and Ho O. L. (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res. 77, 507–512.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1986) The Rat Brain in Stereotaxic Coordinates. Academic Press, New York.

    Google Scholar 

  • Pitkanen A. and Sutula T. (2002) Is epilepsy a progressive disease? Prospects for new therapeutic approaches in temporal lobe epilepsy. Lancet Neurol. 173–181.

  • Pitkanen A., Nissinen J., Nairismagi J., et al. (2002) Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Prog. Brain Res. 135, 67–83.

    Article  PubMed  Google Scholar 

  • Puig B. and Ferrer I. (2001) Cell death signaling in the cerebellum in Creutzfeldt-Jakob disease. Acta. Neuropathol. (Berl.) 102, 207–215.

    CAS  Google Scholar 

  • Salmenpera T., Kalviainen R., Partanen K., and Pitkanen A. (2001) Hippocampal and amygdaloid damage in partial epilepsy: a cross-sectional MRI study of 241 patients. Epilepsy Res. 46, 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S., Tanino H., and Fujimoto S. (1999) Changes in caspase expression in Alzheimer’s disease: comparison with development and aging. Biochem. Biophys. Res. Commun. 256, 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Siegel S. and Castellan N. (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill Book Company, New York, 213–214.

    Google Scholar 

  • Schindler C. K., Pearson E. G., Bonner H. P., et al. (2006) Caspase-3 cleavage and nuclear localization of caspase-activated DNase in human temporal lobe epilepsy. J. Cereb. Blood Flow. Metab. 26, 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Sommer W. (1880) Erkrankung des Ammonshorns als aetiologisches moment der epilepsie. Arch. Psychiatr. Nervenkr. 10, 631–675.

    Article  Google Scholar 

  • Sperk G. (1994) Kainic acid seizures in the rat. Prog. Neurobiol. 42, 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Talanian R. V., Quinlan C., Trautz S., et al. (1997) Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682.

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum J., Zatorre R. J., Carpenter S., Gendron D., and Cashman N. R. (1990) Neurological sequelae of domoic acid intoxication. Can. Dis. Wkly. Rep. 16(Suppl. 1E), 9–12.

    PubMed  Google Scholar 

  • Troy C. M. and Shelanski M. L. (2003) Caspase-2 redux. Cell Death Differ. 10, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Troy C. M., Stefanis L., Greene L. A., and Shelanski M. L. (1997) Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD) downregulation, in sympathetic neurons and PC12 cells. J. Neurosci. 17, 1911–1918.

    PubMed  CAS  Google Scholar 

  • Troy C. M., Rabacchi S. A., Friedman W. J., Frappier T. F., Brown K., and Shelanski M. L. (2000) Caspase-2 mediates neuronal cell death induced by beta-amyloid. J. Neurosci. 20, 1386–1392.

    PubMed  CAS  Google Scholar 

  • Tuunanen J., Lukasiuk K., Halonen T., and Pitkanen A. (1999) Status epilepticus-induced neuronal damage in the rat amygdaloid complex: distribution, time-course and mechanisms. Neuroscience 94, 473–495.

    Article  PubMed  CAS  Google Scholar 

  • Wang L., Miura M., Bergeron L., Zhu H., and Yuan J. (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78, 739–750.

    Article  PubMed  CAS  Google Scholar 

  • Wasterlain C. G. and Shirasaka Y. (1994) Seizures, brain damage and brain development. Brain Dev. 16, 279–295.

    Article  PubMed  CAS  Google Scholar 

  • Watson C., Nielsen S. L., Cobb C., Burgerman R., and Williamson B. (1996) Medial temporal lobe heterotopia as a cause of increased hippocampal and amygdaloid MRI volumes. J. Neuroimaging 6, 231–234.

    PubMed  CAS  Google Scholar 

  • Yamamoto A., Murphy N., Schindler C. K., et al. (2006) Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 65, 217–225.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Narkilahti.

Additional information

The work was supported by The Academy of Finland, The Kuopio University Foundation, The Neurology Foundation, The North-Savo Regional Fund of the Finnish Cultural Foundation, Sigrid Juselius Foundation, and The Vaajasalo Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narkilahti, S., Jutila, L., Alafuzoff, I. et al. Increased expression of caspase 2 in experimental and human temporal lobe epilepsy. Neuromol Med 9, 129–144 (2007). https://doi.org/10.1007/BF02685887

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685887

Index Entries

Navigation