Skip to main content
Log in

A linkage and family-based association analysis of a potential neurocognitive endophenotype of bipolar disorder

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The identification of the genetic variants underpinning bipolar disorder (BPD) has been impeded by a complex pattern of inheritance characterized by genetic and phenotypic heterogeneity, genetic epistasis, and gene-environment interactions. In this paper two strategies were used to ameliorate these confounding factors. A unique South African sample including 190 individuals of the relatively, reproductively isolated Afrikaner population was assessed with a battery of neuropsychological tests in an attempt to identify a BPD-associated quantitative trait or endophenotype. BPD individuals performed significantly worse than their unaffected relatives on visual and verbal memory tasks, a finding congruent with the literature. A focused linkage and family-based association study was carried out using this memory-related endophenotype. In the largest 77-strong Afrikaner pedigree significant evidence for linkage was detected on chromosome 22q11, a region previously implicated in BPD. The quantitative transmission disequilibrium tests-based association analysis suggested that functional variants of the DRD4 and MAO-A genes modulate memory-related cognition. We speculate that polymorphisms at these loci may predispose to a subtype of BPD characterized by memory-related deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abecasis G. R., Cardon L. R., and Cookson W. O. (2000) A General Test of Association for Quantitative Traits in Nuclear Families. Am. J. Human Genet. 66, 279–292.

    Article  CAS  Google Scholar 

  • Abecasis G. R., Cookson W. O. C., and Cardon L. R. (2000) Pedigree tests of transmission disequilibrium. Eur. J. Human Genet. 8, 545–551.

    Article  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders. (4th edition) (DSM-IV). Washington DC: Author.

    Google Scholar 

  • Arcos-Burgos, M. and Muenke, M. (2002) Genetics of population isolates. Clin. Genet. 61, 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Bartres-Faz D., Junque C., Serra-Grabulosa J. M., et al. (2002) Dopamine DRD2 Taq I polymorphism associates with caudate nucleus volume and cognitive performance in memory impaired subjects. Neuroreport 13, 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  • Bauer M. and Pfennig A. (2005) Epidemiology of Bipolar Disorders. Epilepsia 46, 8–13.

    Article  PubMed  Google Scholar 

  • Bilder R. M., Volavka J., Lachman H. M., and Grace A. A. (2004) The Catechol-O-Methyltransferase Polymorphism: Relations to the Tonic-Phasic Dopamine Hypothesis and Neuropsychiatric Phenotypes. Neuropsychopharmacology 29, 1943–1961.

    Article  PubMed  CAS  Google Scholar 

  • Bilder R. M., Volavka J., Czobor P., et al. (2002) Neurocognitive Correlates of the COMT Val158Met Polymorphism in Chronic Schizophrenia. Biol. Psychiatry 52, 701–707.

    Article  PubMed  CAS  Google Scholar 

  • Blackwood D. H. R., He L., Morris S. W., et al. (1996) A locus for bipolar affective disorder on chromosome 4p. Nat. Genet. 12, 427–430.

    Article  PubMed  CAS  Google Scholar 

  • Bray N. J., Buckland P. R., Williams N. M., et al. (2003) A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am. J. Hum. Genet. 73, 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Chen X., Wang X., O’Neill A. F., Walsh D., and Kendler, K. S. (2004) Variants in the catechol-O-methyl-transferase gene (COMT) gene are associated with schizophrenia in Irish high-density families. Mol. Psychiatry 9, 962–967.

    Article  PubMed  CAS  Google Scholar 

  • Cho H. J., Meira-Lima I., Cordeiro Q, et al. (2005) Population-based and family-based studies on the serotonin transporter gene polymorphisms and bipolar disorder: a systematic review and meta-analysis. Mol. Psychiatry 10, 771–781.

    Article  PubMed  CAS  Google Scholar 

  • Collier D. A., Aranz M. J., Sham P., et al. (1996) The serotonin transporter is a potential susceptibility factor for bipolar affective disorder. NeuroReport 7, 1675–1679.

    Article  PubMed  CAS  Google Scholar 

  • Craddock N. and Jones I. (1999) Genetics of bipolar disorder. J. Med. Genet. 36, 585–594.

    PubMed  CAS  Google Scholar 

  • Craddock N., Jones I., Kirov G., and Jones, L. (2004) The Bipolar Affective Disorder Dimension Scale (BADDS)—a dimensional scale for rating lifetime psychopathology in bipolar spectrum disorders. BMC Psychiatry 4, 19.

    Article  PubMed  Google Scholar 

  • Deckert J., Catalano M., Syagailo Y. V., et al. (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum. Mol. Genet. 8, 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Detera-Wadleigh S. D., Badner J. A., Berrettini W. H., et al. (1999) A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc. Natl. Acad. Sci. USA 96, 5604–5609.

    Article  PubMed  CAS  Google Scholar 

  • Diamond A., Briand L., Fossella J., and Gehlbach L. (2004) Genetic and Neurochemical Modulation of Prefrontal Cognitive Functions in Children. Am. J. Psychiatry 161, 125–132.

    Article  PubMed  Google Scholar 

  • Dick D. M., Foroud T., Edenberg H. J., et al. (2002) Apparent Replication of Suggestive Linkage on Chromosome 16 in the NIMH Genetics Initiative Bipolar Pedigrees. Am. J. Med. Genet. 114B, 407–412.

    Article  Google Scholar 

  • Edenberg H. J., Foroud T., Conneally P. M., et al. (1997) Initial Genomic Scan of the NIMH Genetics Initiative Bipolar Pedigrees: Chromosomes 3, 5, 15, 16, 17, and 22. Am. J. Med. Genet. 74B, 238–246.

    Article  Google Scholar 

  • Egan M. F., Goldberg T. E., Kolachana B. S., et al. (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 98, 6917–6922.

    Article  PubMed  CAS  Google Scholar 

  • Egan M. F., Kojima M., Callicott J. H., et al. (2003) The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell 112, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Ewald H., Degn B., Mors O., and Kruse T. A. (1998) Support for the possible locus on chromosome 4p16 for bipolar affective disorder. Mol. Psychiatry 3, 442–448.

    Article  PubMed  CAS  Google Scholar 

  • Ewald H., Flint T., Kruse T. A., and Mors O. (2002) A genome-wide scan show a significant linkage between bipolar disorder and chromosome 12q24.3 and suggestive linkage to chromosomes 1p22-21, 4p16, 6q-14-22, 10q26 and 16p13.3. Mol. Psychiatry 7, 734–744.

    Article  PubMed  CAS  Google Scholar 

  • Fallin M. D., Lasseter V. K., Wolyniec P. S., et al. (2004) Genomewide Linkage Scan for Bipolar-Disorder Susceptibility Loci among Ashkenazi Jewish Families. Am. J. Hum. Genet. 75, 204–219.

    Article  PubMed  CAS  Google Scholar 

  • Fan J. B. and Sklar P. (2005) Meta-analysis reveals association between serotonin transporter gene STin2 VNTR polymorphism and schizophrenia. Mol. Psychiatry 10, 928–938.

    Article  PubMed  CAS  Google Scholar 

  • First M. B., Spitzer R. L., Gibbon M., and Williams J. B. W. (1996) Structured Clinical Interview for the DSM-IV Patient Edition. SCID-I/P (Version 2.0). Modified for the Norvatis Bipolar Disorder Genetic Study: January 7, 1998.

  • Flory J. D., Manuck S. B., Ferrell R. E., Ryan C. M., and Muldoon M. F. (2000) Memory Performance and the Apolipoprotein E Polymorphism in a Community Sample of Middle-Aged Adults. Am. J. Med. Genet. 96B, 707–711.

    Article  Google Scholar 

  • Furlong R. A., Ho L., Rubinsztein J. S., Walsh C., Paykel E. S., and Rubinsztein D. C. (1999) Analysis of the Monoamine Oxidase A (MAO-A) Gene in Bipolar Affective Disorder by Association Studies, Meta-Analyses, and Sequencing of the Promoter. Am. J. Med. Genet. 88B, 398–406.

    Article  Google Scholar 

  • Fossella J., Sommer T., Fan J., et al. (2002) Assessing the molecular genetics of attention networks. BMC Neurosci. 3, 14.

    Article  PubMed  Google Scholar 

  • Glahn D. C., Bearden C. E., Niendam T. A., and Escamilla M. A. (2004) The feasibility of neuropsychological endopenotypes in the search for genes associated with bipolar affective disorder. Bipolar Disord. 6, 171–182.

    Article  PubMed  Google Scholar 

  • Gordon D., Simonic I., and Ott J. (2000) Significant Evidence for Linkage Disequilibrium over a 5-cM Region Among Afrikaners. Genomics 66, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman I. I. and Gould T. D. (2003) The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions. Am. J. Psychiatry 160, 636–645.

    Article  PubMed  Google Scholar 

  • Gould T. D. and Gottesman I. I. (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav. 5, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Green E., Elvidge G., Jacobsen Glaser B., et al. (2005) Localization of Bipolar Susceptibility Locus by Molecular Genetic Analysis of the Chromosome 12q23-q24 Region in Two Pedigrees with Bipolar Disorder and Darier’s Disease. Am. J. Psychiatry 162, 35–42.

    Article  PubMed  Google Scholar 

  • Greenwood T. A., Schork N. J., Eskin E., and Kelsoe J. R. (2006) Identification of additional variants with the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol. Psychiatry 11, 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood P. M., Sunderland T., Friz J. L., and Parasuraman R. (2000) Genetics and visual attention: Selective deficits in healthy adult carriers of the ɛ4 allele of the apolipoprotein E gene. Proc. Natl. Acad. Sci. USA 97, 11,661–11,666.

    Article  CAS  Google Scholar 

  • Greenwood T. A., Alexander M., Keck P. E., et al. (2001) Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am. J. Med. Genet. 8B, 145–151.

    Article  Google Scholar 

  • Hall D., Wijsman E. M., Roos J. L., Gogos J. A., and Karayiorgou M. (2002) Extended Intermarker Linkage Disequilibrium in the Afrikaners. Genome Res. 12, 956–961.

    Article  PubMed  CAS  Google Scholar 

  • Handoko H. Y., Nyholt D. R., Hayward N. K., et al. (2005) Separate and interacting effects with the catechol-O-methyltransferase (COMT) gene are associated with schizophrenia. Mol. Psychiatry 10, 589–597.

    Article  PubMed  CAS  Google Scholar 

  • Hariri A. R., Goldberg T. E., Mattay V. S., et al. (2003) Brain-Derived Neurotrophic Factor val66met Polymorphism Affects Human Memory-Related Hippocampal Activity and Predicts Memory Performance. J. Neurosci. 23, 6690–6694.

    PubMed  CAS  Google Scholar 

  • Hasler G., Drevets W. C., Gould T. D., Gottesman I. I., and Manji H. K. (2006) Toward Constructing an Endophenotype Strategy for Bipolar Disorders. Biol. Psychiatry 60, 93–105.

    PubMed  Google Scholar 

  • Hauser J., Leszczynska A., Samochowiec J., et al. (2003) Association analysis of the insertion/deletion polymorphism in the serotonin transporter gene in patients with affective disorder. Eur. Psychiatry 18, 129–132.

    Article  PubMed  Google Scholar 

  • Helmes E. (2000) Learning and Memory, in Neuropsychological Assessment in Clinical Practice, Groth-Marnat G. ed., John Wiley, New York, pp. 293–334.

    Google Scholar 

  • Hirschfeld R. M. A. and Vornik L. A. (2005) Bipolar Disorder—Costs and Comorbidity. Am. J. Managed Care 11, S85-S90.

    Google Scholar 

  • Kawada Y., Hattori M., Dai X. Y., and Nanko S. (1995) Possible association between monoamine oxidase A gene and bipolar affective disorder. Am. J. Hum. Genet. 56, 335–336.

    PubMed  CAS  Google Scholar 

  • Kelsoe J. R., Spence M. A., Loetscher E., et al. (2001) A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc. Natl. Acad. Sci. USA 98, 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Kessing L. V. and Nilsson F. M. (2003) Increased risk of developing dementia in patients with major affective disorders compared to patients with other medical illnesses. J. Affect Disord. 73, 261–269.

    Article  PubMed  Google Scholar 

  • Kunugi H., Hattori M., Kato T., et al. (1997) Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol. Psychiatry 2, 457–462.

    Article  PubMed  CAS  Google Scholar 

  • Lezak M. D. (1995) Neuropsychological Assessment. Oxford University, New York.

    Google Scholar 

  • Lim L. C., Powell J., Sham P., et al. (1995) Evidence for a genetic association between monoamine oxidase A gene and bipolar affective disorder. Am. J. Med. Genet. 60B, 325–331.

    Article  Google Scholar 

  • Lopez-Leon S., Croes E. A., Sayed-Tabatabaei F. A., Claes S., Van Broekhoven C., and van Duijn C. M. (2005) The Dopamine D4 Receptor Gene 48-Base-Pair-Repeat Polymorphism and Mood Disorders: A Meta-Analysis. Biol. Psychiatry 57, 999–1003.

    Article  PubMed  CAS  Google Scholar 

  • MacGregor S., Visscher P. M., Knott S. A., et al. (2004) A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol. Psychiatry 9, 1083–1090.

    Article  PubMed  CAS  Google Scholar 

  • Manor I., Tyano S., Eisenberg J., Bachner-Melman R., Kotler M., and Ebstein R. P. (2002) The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance task (TOVA). Mol. Psychiatry 7, 790–794.

    Article  PubMed  CAS  Google Scholar 

  • Massat I., Souery D., Del-Favero J., et al. (2002) Positive Association of Dopamine D2 Receptor Polymorphism with Bipolar Affective Disorder in a European Multicenter Association Study of Affective Disorders. Am. J. Med. Genet. 114B, 177–185.

    Article  Google Scholar 

  • Maziade M., Roy M. A., Chagnon Y. C., et al. (2005) Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol. Psychiatry 10, 486–499.

    Article  PubMed  CAS  Google Scholar 

  • McInnis M. G., Lan T. H., Willour V. L., et al. (2003) Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol. Psychiatry 8, 288–298.

    Article  PubMed  CAS  Google Scholar 

  • Merikangas K. R. and Low N. C. P. (2004) The Epidemiology of Mood Disorders. Curr. Psychiatry Reports 6, 411–421.

    Article  Google Scholar 

  • Middleton F. A., Pato M. T., Gentile K. L., et al. (2004) Genomewide Linkage Analysis of Bipolar Disorder by Use of a High-Density Single-Nucleotide Polymorphism (SNP) Genotyping Assay: A Comparison with Microsatellite Marker Assays and Finding of Significant Linkage to Chromosome 6q22. Am. J. Hum. Genet. 74, 886–897.

    Article  PubMed  CAS  Google Scholar 

  • Morissette J., Villeneuve A., Bordeleau L., et al. (1999) Genome-Wide Search for Linkage of Bipolar Affective Disorders in a Very Large Pedigree Derived From a Homogeneous Population in Quebec Points to a Locus of Major Effect on Chromosome 12q23-q24. Am. J. Med. Genet. 88B, 567–587.

    Article  Google Scholar 

  • Muglia P., Petronis A., Mundo E., Lander S., Cate T., and Kennedy J. L. (2002) Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder. Evidence for a role of DRD4. Mol. Psychiatry 7, 860–866.

    Article  PubMed  CAS  Google Scholar 

  • Neves-Pereira M., Cheung J. K., Pasdar A., et al. (2005) BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol. Psychiatry 10, 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Neves-Pereira M., Mundo E., Muglia P., King N., Macciardi F., and Kennedy J. L. (2002) The Brain-Derived Neurotrophic Factor Gene Confers Susceptibility to Bipolar Disorder: Evidence from a Family-Based Association Study. Am. J. Hum. Genet. 71, 651–655.

    Article  PubMed  CAS  Google Scholar 

  • Noble E. P., Berman S. M., Ozkaragoz T. Z., and Ritchie T. (1994) Prolonged P300 Latency in Children with the D2 Dopamine Receptor A1 Allele. Am. J. Hum. Genet. 54, 658–668.

    PubMed  CAS  Google Scholar 

  • Nolan K. A., Bilder R. M., Lachman H. M., and Volavka J. (2004) Catechol O-Methyltransferase Val158Met Polymorphism in Schizophrenia: Differential Effects of Val and Met Alleles on Cognitive Stability and Flexibility. Am. J. Psychiatry 161, 359–361.

    Article  PubMed  Google Scholar 

  • O’Connell J. R. and Weeks D. E. (1998) PedCheck: A program for identifying genotype incompatibilities in linkage analysis. Am. J. Hum. Genet. 63, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Papassotiropolous A., Wollmer M. A., Aguzzi A., Hock C., Nitsch R. M., and de Quervain D. J. F. (2005) The prion gene is associated with human long-term memory. Hum. Mol. Genet. 14, 2241–2246.

    Article  CAS  Google Scholar 

  • Park N., Juo S. H., Loth J. E., et al. (2004) Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol. Psychiatry 9, 1091–1099.

    Article  PubMed  CAS  Google Scholar 

  • Passamonti L. et al. (2006) Monoamine Oxidase-A Genetic Variations Influence Brain Activity Associated with Inhibitory Control: New Insight into the Neural Correlates of Impulsivity. Biol. Psychiatry 59, 334–340.

    Article  PubMed  CAS  Google Scholar 

  • Paunio T., Tuulio-Henriksson A., Hiekkalinna T., et al. (2004) Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Hum. Mol. Genet. 13, 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  • Payton A., Gibbons L., Davidson Y., et al. (2005) Influence of serotonin transporter gene polymorphisms on cognitive decline and cognitive abilities in a nondemented elderly population. Mol. Psychiatry 10, 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  • Perneger T. V. (1998) What’s wrong with Bonferroni adjustments. Brit. Med. J. 316, 1236–1238.

    PubMed  CAS  Google Scholar 

  • Postma D., Luciano M., de Geus E. J. C., et al. (2005) A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am. J. Hum. Genet. 77, 318–326.

    Article  Google Scholar 

  • Potash J. B., Zandi P. P., Willour V. L., et al. (2003) Suggestive Linkage to Chromosomal Regions 13q31 and 22q12 in Families With Psychotic Bipolar Disorder. Am. J. Psychiatry 160, 680–686.

    Article  PubMed  Google Scholar 

  • Preisig M., Bellivier F., Fenton B. T., et al. (2000) Association between Bipolar Disorder and Monoamine Oxidase A Gene Polymorphisms: Results of a Multicenter Study. Am. J. Psychiatry 157, 948–955.

    Article  PubMed  CAS  Google Scholar 

  • Reed T., Carmelli D., Swan G. E., et al. (1994) Lower Cognitive Performance in Normal Older Adult Male Twins Carrying the Apolipoprotein E ɛ4 Allele. Arch. Neurol. 51, 1189–1192.

    PubMed  CAS  Google Scholar 

  • Rice J. P., Goate A., Williams J. T., et al. (1997) Initial Genome Scan of the NIMH Genetics Initiative Bipolar Pedigrees: Chromosomes 1, 6, 8, 10, 12. Am. J. Med. Genet. 74B, 247–253.

    Article  Google Scholar 

  • Rosselli M. and Ardila A. (1991). Effects of age, education, and gender on the Rey-Osterrieth Complex Figure. The Clin. Neuropsychol. 5, 370–376.

    Google Scholar 

  • Rotondo A., Mazzanti C., Dell O., et al. (2002) Catechol o-methyltransferase, serotonin transporter, and tryptophan hydroxylase gene polymorphisms in bipolar disorder patients with and without comorbid panic disorder. Am. J. Psychiatry 159, 23–29.

    Article  PubMed  Google Scholar 

  • Rubinsztein D. C., Leggo J., Goodburn S., Walsh C., Jain S., and Paykel E. S. (1996) Genetic association between monoamine oxidase A microsatellite and RFLP alleles and bipolar affective disorder: analysis and meta-analysis. Hum. Mol. Genet. 5, 779–782.

    Article  PubMed  CAS  Google Scholar 

  • Rujescu D., Hartmann A. M., Gonnermann C., Moller H. J., and Giegling I. (2003) M129V variation in the prion protein may influence cognitive performance. Mol. Psychiatry 8, 937–941.

    Article  PubMed  CAS  Google Scholar 

  • Sanders A. R., Rusu I., Duan J., et al. (2005) Haplotypic association spanning the 22q11.21 genes COMT and ARVCF with schizophrenia. Mol. Psychiatry 10, 353–365.

    Article  PubMed  CAS  Google Scholar 

  • Savitz J., Solms M., and Ramesar R. (2005a) Neuropsychological Deficits in Bipolar Affective Disorder: A Critical Opin. Bipolar Disord. 7, 216–235.

    Article  PubMed  Google Scholar 

  • Savitz J. B., Solms M., and Ramesar R. S. (2005b) Neurocognitive function as an endophenotype for genetic studies of bipolar affective disorder. Neuro. Mol. Med. 7, 275–286.

    CAS  Google Scholar 

  • Savitz J., Solms M., and Ramesar R. (2006a) The Molecular Genetics of Cognition: Dopamine, COMT, and BDNF. Genes Brain Behav. 5, 311–328.

    Article  PubMed  CAS  Google Scholar 

  • Savitz J., van der Merwe L., Solms M., and Ramesar R. (2006b) Neuropsychological Dysfunction in Bipolar Spectrum Disorders. Submitted for publication.

  • Schulze T. G., Muller D. J., Krauss H., et al. (2000) Association Between a Functional Polymorphism in the Monoamine Oxidase A Gene Promoter and Major Depressive Disorder. Am. J. Med. Genet. 96B, 801–803.

    Article  Google Scholar 

  • Shaw S. H., Mroczkowski-Parker Z., Shekhtman T., et al. (2003) Linkage of a bipolar disorder susceptibility locus to human chromosome 13q32 in a new pedigree series. Mol. Psychiatry 8, 558–564.

    Article  PubMed  CAS  Google Scholar 

  • Shifman S., Bronstein M., Sternfeld M., et al. (2002) A highly significant association between a COMT haplotype and schizophrenia. Am. J. Hum. Genet. 71, 1296–1302.

    Article  PubMed  CAS  Google Scholar 

  • Shink E., Morissette J., Sherrington R., and Barden N. (2004) A genome-wide screen points to a susceptibility locus for bipolar disorder on chromosome 12. Mol. Psychiatry 10, 545–552.

    Article  CAS  Google Scholar 

  • Sklar P., Gabriel S. B., McInnes M. G., et al. (2002) Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk factor. Mol. Psychiatry 7, 579–593.

    Article  PubMed  CAS  Google Scholar 

  • Skol A.D., Young K.A., Tsuang D.W., et al. (2003) Modest evidence for linkage and possible confirmation of association between NOTCH4 and schizophrenia in a large Veterans Affairs Cooperative Study sample. Am. J. Med. Genet. 118B, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Spielman R. S., McGinnis R. E., and Ewens W. J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516.

    PubMed  CAS  Google Scholar 

  • Squire L. R. (1987) Memory and Brain. New York: Oxford University Press.

    Google Scholar 

  • Strauss J., Barr C. L., George C. J., et al. (2004) BDNF and COMT Polymorphisms: Relation to Memory Phenotypes in Young Adults With Childhood-Onset Mood Disorder. Neuro. Mol. Med. 5, 181–192.

    Article  CAS  Google Scholar 

  • Swanson J. M., Oosterlaan J., Murias M., et al. (2000) ADHD children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behaviour but normal performance on critical neuropsychological tests of attention. Proc. Natl. Acad. Sci. USA 97, 4754–4759.

    Article  PubMed  CAS  Google Scholar 

  • Szeszko P. R., Lipsky R., Mentschel C., et al. (2005) Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol. Psychiatry 10, 631–636.

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger J. D. and Goring H. H. H. (2000) Gene Mapping in the 20th and 21st Centuries: Statistical Methods, Data Analysis and Experimental Design. Hum. Biol. 72, 63–132.

    PubMed  CAS  Google Scholar 

  • Thomas D. C. (2004) Statistical Methods in Genetic Epidemiology. Oxford University Press, New York.

    Google Scholar 

  • Turecki G., Grof P., Grof E., et al. (2001) Mapping susceptibility genes for bipolar disorder: a pharmacogenetic approach based on excellent response to lithium. Mol. Psychiatry 6, 570–578.

    Article  PubMed  CAS  Google Scholar 

  • Wei J. and Hemmings G. P. (2000) The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat. Genet. 25, 376–377.

    Article  PubMed  CAS  Google Scholar 

  • Wigginton J. E. and Abecasis G. R (2005) PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 21, 3445–3447.

    Article  PubMed  CAS  Google Scholar 

  • Xing Q. H., Wu S. N., Lin Z. G., et al. (2003) Association analysis of polymorphisms in the upstream region of the dopamine D4 receptor gene in schizophrenia. Schizophr. Res. 56, 9–14.

    Article  Google Scholar 

  • Zubenko G. S., Maher B., Hughes H. B. 3rd, et al. (2003) Genome-Wide Linkage Survey for Genetic Loci That Influence the Development of Depressive Disorders in Families with Recurrent, Early Onset, Major Depression. Am. J. Med. Genet. 123B, 1–18.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Savitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savitz, J., van der Merwe, L., Solms, M. et al. A linkage and family-based association analysis of a potential neurocognitive endophenotype of bipolar disorder. Neuromol Med 9, 101–116 (2007). https://doi.org/10.1007/BF02685885

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685885

Index Entries

Navigation