Advertisement

Dimension projective finie et cohomologie locale

Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck
  • C. Peskine
  • L. Szpiro
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    M. Artin, Algebraic approximation of structures over complete local rings,Publ. Math. I.H.E.S.,36, 1969.Google Scholar
  2. [2]
    M. Auslander, Modules over unramified regular local rings,Ill. J. of Math.,5 (1961), 631–645.zbMATHMathSciNetGoogle Scholar
  3. [3]
    M. Auslander, Modules over unramified regular local rings,Proc. Intern. Congress of math., 1962, 230–233.Google Scholar
  4. [4]
    M. Auslander, On the purity of branch locus,Amer. J. of Math.,84 (1962), 116–125.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. Auslander etD. Buchsbaum, Homological codimension and multiplicity,Ann. of Math.,68 (1958), 626–657.CrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Bass, On the ubiquity of Gorenstein rings,Math. Zeitschr.,82 (1963), 8–28.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    N. Bourbaki,Algèbre commutative, Hermann, Paris, 1961–65.Google Scholar
  8. [8]
    H. Cartan etS. Eilenberg,Homological algebra, Princeton University Press, 1956.Google Scholar
  9. [9]
    Gabriel, Objects injectifs dans les catégories abéliennes,Séminaire Dubreil-Pisot, Algèbre et théorie des nombres, 12e année, 1958–1959, no 17, 32 p.Google Scholar
  10. [10]
    A. Grothendieck,Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), North Holland, Amsterdam, 1968.Google Scholar
  11. [11]
    A. Grothendieck, Local cohomology,Lectures notes on mathematics, no 41, Springer Verlag, 1967.Google Scholar
  12. [12]
    A. Grothendieck, Éléments de géométrie algébrique,Publ. Math. I.H.E.S., nos 4, 8, 11, 17, 20, 24, 32.Google Scholar
  13. [13]
    R. Hartshorne, Residues and duality,Lectures notes on mathematics, no 20, Springer Verlag, 1966.Google Scholar
  14. [14]
    R. Hartshorne, Cohomological dimension of algebraic varieties,Ann. of Math.,88 (1968), 403–450.CrossRefMathSciNetGoogle Scholar
  15. [15]
    R. Hartshorne, Ample subvarieties of algebraic varieties,Lectures notes in mathematics, no 156, Springer Verlag, 1970.Google Scholar
  16. [16]
    Horrocks, Vector bundles on the punctured spectrum of a local ring,Proc. Lond. Math. Soc. (3),14 (1964), 689–713.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    S. Kleimann, On the vanishing of Hn(X,J) for ann-dimensional variety,Proc. Amer. Math. Soc.,18 (1967), 940–944.CrossRefMathSciNetGoogle Scholar
  18. [18]
    E. Kunz, Characterisations of regular local rings of characteristicp, Amer. J. of Math.,41 (1969), 772–784.CrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Lichtenbaum, On the vanishing of Tor in regular local rings,Ill. J. of Math.,10 (1966), 220–226.zbMATHMathSciNetGoogle Scholar
  20. [20]
    Macaulay,Algebraic theory of modular systems, Cambridge tracts, no 19, 1916.Google Scholar
  21. [21]
    D. Rees, The grade of an ideal or module,Proc. Camb. phil. soc.,53 (1957), 28–42.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    P. Samuel,Séminaire d’algèbre commutative, Anneaux de Gorenstein et torsion en algèbre commutative. Secrétariat mathématique, 11, rue Pierre Curie, Paris (5e), 1967.Google Scholar
  23. [23]
    J.-P. Serre, Algèbre locale et multiplicité,Lectures notes in mathematics, no 11, Springer Verlag, 1965.Google Scholar
  24. [24]
    D. A. Buschbaum, Complexes associated with the minors of a matrix,Symposia Matematica, vol. IV, 1970, Bologna.Google Scholar

Copyright information

© Publications mathématiques de l’I.H.É.S 1973

Authors and Affiliations

  • C. Peskine
  • L. Szpiro

There are no affiliations available

Personalised recommendations