Skip to main content
Log in

A model of blood interaction with optical-fluid guide for laser angioplasty

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model is developed to describe the flow and mixing of blood and optical fluid used in liquid-guided light for laser angioplasty. The model is based on a two-fluid formulation in which separate transport equations are solved for the blood and the optical fluid. Empirical relations, established in prior work, are used to represent interfluid transport of momentum. Both steady and phasic inflow conditions are considered. Parametric calculations are performed showing effect of relative flow rates of blood and optical fluid, on the mixing phenomena. The relative velocity considered (based on average blood velocity) ranged from 0.08 to 0.28 m/sec. No allowance has been made for ablation of the plaque. The predicted results include spatial distribution of the velocity field and the existence probabilities (volume fractions) that provide a measure of the extent of mixing between the fluids. It is found that the degree of mixing is adversely affected by the relative inflow velocity between blood and optical fluid and the pulsatility of blood inflow. Deep penetration of the optical fluid is predicted at high relative velocity and at the end of diastolic and early systolic stages of the cardiac cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abela, G. S. Treatment of Myocardial Abnormalities with Laser Therapy, vol. 2. Proceedings of the IEEE LEOS Annual Meeting. Piscataway, NJ: IEEE, 1994, pp. 1–300.

    Google Scholar 

  2. Bekesho, A. N., A. A. Belyaev, G. N. Zmievskoi, N. V. Rubinskii, S. E. Ragimov, N. A. Ryzhov, and V. S. Stefanyuk. Effect of absorption of laser radiation by blood hemoglobin on threshold of destruction of pathological tissue during laser angioplasty.Biomed. Eng. (Meditsinskaya Technika) 23: 29–32, 1989.

    Google Scholar 

  3. Berne, R., and M. Levy. Cardiovascular Physiology (third edition). St. Louis: C. V. Mosby Company, 1967, pp. 1–254.

    Google Scholar 

  4. Clark, D. A. Coronary Angioplasty. New-York: Wiley, 1991, pp. 1–302.

    Google Scholar 

  5. Collins, M. W., and X. Y. Xu. A predictive scheme for flow in arterial bifurcation: comparison with laboratory measurements. In: Biomechanical transport processes, edited by F. Mosora et al. New York: Plenum Press, 1990, pp. 125–133.

    Google Scholar 

  6. Fahy, C. PLC awaits U.S. approval for heart piercing laser treatment.MASS High Technol. 14:1–3, 1996.

    Google Scholar 

  7. Fang, N., S. Zhang, D. Zheng, H. Lu, and B. Gai. Effects of laser angioplasty on cell cycle and profileration of vascular smooth muscle cells.Appl. Laser Technol. 14:97–89, 1994.

    Google Scholar 

  8. Geschwin, H. J. Current status of laser angioplasty.J. Clin. Eng. 13:121–125, 1988.

    Google Scholar 

  9. Gregory, K. Diagnostic and therapeutic cardiovascular intervention.OE Repts. 145:1–20, 1996.

    Google Scholar 

  10. Gregory, K., and R. Anderson. Liquid core light guide for laser angioplasty.IEEE J. Quant. Electr. 26:2289–2296. 1990.

    Article  CAS  Google Scholar 

  11. Ilegbusi, O. J. The two-fluids model of turbulence and its application in metals processing.J. Mater. Proc. Manuf. Sci. 3:143–157, 1990.

    Google Scholar 

  12. Ilegbusi, O. J. Mixing and Unmixedness in Plasma Jets. 1. Near-field Analysis. First Annual Thermal and Fluids Analysis Workshop, August 16–20, 1993. NASA Lewis, Cleveland, OH, 1993, pp. 307–328.

    Google Scholar 

  13. Ilegbusi, O. J. Pulsatile flow in large blood vessels with turbulent bursts and relaminarization.J. Math. Model. Sci. Comput. 1996, in press. (Also presented at the 9th ICMCM Conference, University of California at Berkley, Berkley, CA, July, 1993).

  14. Ilegbusi, O. J., and D. B. Spalding. Prediction of fluid flow and heat transfer characteristics of turbulent shear flows with a two-fluid model of turbulence.Int. J. Heat Mass Transfer 32:767–773, 1989.

    Article  CAS  Google Scholar 

  15. Ilegbusi, O. J., and J. Szekely. The modelling of gas-bubble driven circulation system.ISIJ Int. 30:731–739, 1990.

    CAS  Google Scholar 

  16. Jones, C. J. K., M. J. Lever, Y. Ogasawara, K. H. Parker, O. Hiramatsu, K. Mito, K. Tsujioka, and F. Kajiya. Blood velocity distributions within intact canine arterial bifurcation.Am. J. Physiol. 32 (Heart Circ. Physiol.): 1592–1599, 1992.

    Google Scholar 

  17. Joseph, D. D. Stability of Fluid Motions, vol. 1. Berlin: Springer-Verlag, 1976, pp. 1–267.

    Google Scholar 

  18. Kikuchi, M., A. Kurita, H. Nakamura, H. Takaoka, A. Utsumi, and K. Takeuchi. State of the art of CO laser angioplasty system.Proc. SPIE 2130:127–131, 1994.

    Article  Google Scholar 

  19. Landry, R. J., D. Sliney, and R. Scott (eds.). Optical and laser technology in medicine.Proc. SPIE 605: 1–99, 1986.

  20. Laudenslager, J. B. Laser Angioplasty: Why Use a Laser and What Type to Use. In: Proceedings of the Lasers and Electro-Optics Society Annual Meeting. Piscataway, NJ: IEEE Service Center, 1993, pp. 1–261.

    Google Scholar 

  21. Launder, B. E., and D. B. Spalding. Lectures in Mathematical Models of Turbulence. New York: Academic Press, 1972, pp. 1–169.

    Google Scholar 

  22. Liepsch, D., S. Moravec, A. K. Rastogi, and N. S. Vlachos. Measurement and calculations of laminar flow in ninety degree bifurcation.J. Biomech. 15:473–487, 1982.

    Article  PubMed  CAS  Google Scholar 

  23. Litvack, F., et al. Coronary Laser Angioplasty. London: Blackwell Scientific Publications, 1992, pp. 1–276.

    Google Scholar 

  24. Loree, T., I. Bigio, and G. Springler. Medical applications of laser and optical technology.J. Laser Applic. 4:58–61, 1992.

    Google Scholar 

  25. Marcues, D. Light Transmission Optics. New York: Van Nostrand Reinhold, 1982, pp. 1–444.

    Google Scholar 

  26. Moretti, M. Cardiology meeting reveals laser angioplasty advances.Laser Focus World 25:1–38, 1989.

    Google Scholar 

  27. Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis.J. Biomech. Eng. 114:273–282, 1992.

    Google Scholar 

  28. Nie, S., Q. Ren, D. C. Redd, and N. Yu. Near-IR Fourier transform Raman spectroscopy in surgery and medicine: guidance system for laser angioplasty.Proc. SPIE 1642:18–24, 1992.

    Article  Google Scholar 

  29. Passafaro, J. D., and P. J. Zalesky. Engineering considerations for integrating laser angioplasty with ultrasound diagnostics in a single device.Proc. SPIE 1201:527–534, 1990.

    Article  Google Scholar 

  30. Perktold, K., R. M. Nerem, and R. O. Peter. A numerical calculation of flow in a curved tube model of the left main coronary artery.J. Biomech. 21:175–189, 1991.

    Article  Google Scholar 

  31. Prandtl, L. Bericht über untersuchungen zur ausgebildeten turbulenz.Z. Angew. Math. Mech. 5:1–136, 1925.

    Article  Google Scholar 

  32. Randarpa, K., N. Davis, G. A. Gardiner, D. P. Harrington, A. Selwyn, and D. C. Levin. Hemodynamic evaluation of arterial stenoses by computer simulation.Invest. Radiol. 22: 393–403, 1987.

    Article  Google Scholar 

  33. Rosten, H. I., and D. B. Spalding. The Mathematical Basis of the PHOENICS-EARTH Computer Code. CHAM Technical Report No. 58b. London: CHAM Ltd., 1981.

    Google Scholar 

  34. Rosten, H. I., and D. B. Spalding. PHOENICS Beginner’s Guide and User’s Manual. CHAM Technical Report No. Tr/100. London: CHAM Ltd., 1986.

    Google Scholar 

  35. Sander, R, H. Poesl, F. Frank, P. Meister, M. Strobel, and A. Spuhler. An Nd: Yag laser with a water-guide laser beam—a new transmission system.Gastrointest. Endosc. 34:338, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilegbusi, O.J., Nosovitsky, V.A. A model of blood interaction with optical-fluid guide for laser angioplasty. Ann Biomed Eng 25, 653–664 (1997). https://doi.org/10.1007/BF02684843

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684843

Keywords

Navigation