Skip to main content
Log in

Nonlinear model for capillary-tissue oxygen transport and metabolism

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Oxygen consumption in small tissue regions cannot be measured directly, but assessment of oxygen transport and metabolism at the regional level is possible with imaging techniques using tracer15O-oxygen for positron emission tomography. On the premise that mathematical modeling of tracer kinetics is the key to the interpretation of regional concentration-time curves, an axially-distributed capillary-tissue model was developed that accounts for oxygen convection in red blood cells and plasma, nonlinear binding to hemoglobin and myoglobin transmembrane transport among red blood cells, plasma, interstitial fluid and parenchymal cells, axial dispersion, transformation to water in the tissue, and carriage of the reaction product into venous effluent. Computational speed was maximized to make the model useful for routine analysis of experimental data. The steady-state solution of a parent model for tracer oxygen and tracer water. The set of models provides estimates of oxygen consumption, extraction, and venouspO2 by fitting model solutions to experimental tracer curves of the regional tissue content or venous outflow. The estimate myocardial oxygen consumption for the whole heart was in good agreement with that measured directly by the Fick method and was relatively insensitive to noise. General features incorporated in the model make it widely applicable to estimating oxygen consumption in other organs from data obtained by external detection methods such as positron emission tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassingthwaighte, J. B., F. H. Ackerman, and E. H. Wood. Applications of the lagged normal density curve as a model for arterial dilution curves.Circ. Res. 18:398–415, 1966.

    PubMed  CAS  Google Scholar 

  2. Bassingthwaighte, J. B.. Plasma indicator dispersion in arteries of the human leg.Cir. Res. 19:332–346, 1966.

    CAS  Google Scholar 

  3. Bassingthwaighte, J. B., T. J. Knopp, and J. B. Hazelrig. A. concurrent flow model for capillary-tissue exchange. In: Capillary permeability (Alfred Benzon Symp. II), edited by C. Crone and N. A. Lassen. Copenhagen Munksgaard, 1970, pp. 60–80.

    Google Scholar 

  4. Bassingthwaighte, J. B., T. Yipintsoi, and R. B. Harvey. Microvasculature of the dog left ventricular myocardium.Microvasc. Res. 7:229–249, 1974.

    Article  PubMed  CAS  Google Scholar 

  5. Bassingthwaighte, J. B.. Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: flow estimation from tracer washout.Progr. Cardiovasc. Dis. 20:165–189, 1977.

    Article  CAS  Google Scholar 

  6. Bassingthwaighte, J. B., and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of physiology, sect. 2. The cardiovascular system, vol. IV. The microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: American Physiological Society, 1984, pp. 549–626.

    Google Scholar 

  7. Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity.Circ. Res. 65:578–590, 1989.

    PubMed  CAS  Google Scholar 

  8. Bassingthwaighte, J. B., C. Y. Wang, and J. S. Chan. Blood-tissue exchange via transport and transformation by endothelial cells.Circ. Res. 65:997–1020, 1989.

    PubMed  CAS  Google Scholar 

  9. Bassingthwaighte, J. B., M. A. Malone, T. C. Moffett, R. B. King, I. S. Chan, J. M. Link, and K. A. Krohn. Molecular and particulate depositions for regional myocardial flows in sheep.Circ. Res. 66:1328–1344, 1990.

    PubMed  CAS  Google Scholar 

  10. Bassingthwaighte, J. B., I. S. Chan, and C. Y. Wang. Computationally efficient algorithms for capillary convection-permeation-diffusion models for blood-tissue exchange.Ann. Biomed. Eng. 20:687–725, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Bassingthwaighte, J. B., and D. A. Beard. Fractal15O-water washout from the heart.Circ Res. 77:1212–1221, 1995.

    PubMed  CAS  Google Scholar 

  12. Bergmann, S. R., P. Herrero, J. Markham, C. J. Weinheimer, and M. N. Walsh. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography.J. Am. Coll. Cardiol. 14:639–652, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Bohr, C. Über-die spezifische tatigkeit der lungen bei der respiratori schen gasaufnahme und ihr verhalten zu der durch die alveolarwand staffindenden gasdiffusion.Skand. Arch. Physiol. 22:221–280, 1909.

    Google Scholar 

  14. Buerk, D. G., and Bridges, E. A simplified algoprithm for computing the variation in oxyhemoglobin saturation with pH, pCO2, T, and DPG.Chem. Eng. Commun. 47:113, 1986.

    Article  CAS  Google Scholar 

  15. Clark, A., Jr., W. J. Federspiel, P. A. A. Clark, and G. R. Cokelet. Oxygen delivery from red cells.Biophys. J. 47: 171–181, 1985.

    Article  PubMed  Google Scholar 

  16. Clough, A. V., A. Al-Tinawi, J. H. Linehan, and C. A. Dawson. Regional transit time estimation from image residue curves.Ann. Biomed. Eng. 22:128–143, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. de Koming, L., J. C. Hoofd, and E. Kreuzer. Oxygen transport and the function of myoglobin. Theoretical model and experiments in chicken gizzard smooth muscle.Pflügers Arch. 389:211–217, 1981.

    Article  Google Scholar 

  18. Desjardins, C., and B. R. Duling. Microvessel hematocrit: measurement and implications for capillary oxygen transport.Am. J. Physiol. 252:H494-H503, 1987.

    PubMed  CAS  Google Scholar 

  19. Deussen, A., and J. B. Bassingthwaighte. Modeling15O-oxygen tracer data for estimating oxygen consumption.Am. J. Physiol. 270 (Heart. Circ. Physiol. 39):H1115-H1130, 1996.

    PubMed  CAS  Google Scholar 

  20. Federspiel, W. J., and I. H. Sarelius. An examination of the contribution of red cell spacing to the uniformity of oxygen flux at the capillary wall.Microvasc. Res. 27:273–285, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Goldstick, T. K., V. T. Ciuryla, and L. Zuckerman. Diffusion of oxygen in plasma and blood.Adv. Exp. Med. Biol. 75:183–190, 1976.

    PubMed  CAS  Google Scholar 

  22. Gonzalez, F., and J. B. Bassingthwaighte. Hererogeneities in regional volumes of distribution and flows in the rabbit heat.Am. J. Physiol. 258 (Heart. Circ. Physiol. 27):H1012-H1024, 1990.

    PubMed  CAS  Google Scholar 

  23. Grieb, P., R. E. Forster, D. Strome, C. W. Goodwin, and P. C. Pape. O2 exchange between blood and brain tissues studied with18O2 indicator dilution technique.J. Appl. Physiol. 58:1929–1941, 1985.

    PubMed  CAS  Google Scholar 

  24. Groebe, K., and G. Thews. Theoretical analysis of oxygen supply to contracted skeletal muscle.Adv. Exp. Med. Biol. 200:495–514, 1986.

    PubMed  CAS  Google Scholar 

  25. Groebe, K., and G. Thews. Effects of red cell spacing and red cell movement upon oxygen release under conditions of maximally working skeletal muscle. In: Oxygen transport to tissue XI, edited by K. Rakusan, G. P. Biro, T. K. Goldstick, and Z. Turek, New York: Plenum Press, 1989, pp. 175–185.

    Google Scholar 

  26. Grunewald, W. A., and W. Sowa. Capillary structures and O2 supply to tissue. An analysis with a digital diffusion model as applied to the skeletal muscle.Rev. Physiol. Biochem. Pharmacol. 77:149–209, 1977.

    Article  PubMed  CAS  Google Scholar 

  27. Hellums, J. D. The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue.Microvasc. Res. 13:131–136, 1977.

    Article  PubMed  CAS  Google Scholar 

  28. hellums, J.D., P.K. Nair, N.S. Huang, and N. Ohshima. Simulation of intraluminal gas transport processes in the microcirculation.Am. Biomed. Eng. 24:1–24, 1996.

    Article  CAS  Google Scholar 

  29. Homer, L. D., J. B. Shelton, C. H. Dorsey, and T. J. Williams. Anisotropic diffusion of oxygen in slices of rat muscle.Am. J. Physiol. 246 (Reg. Int. Comp. Physiol. 15):R107-R113, 1984.

    PubMed  CAS  Google Scholar 

  30. Huang, S. C., D. G. Feng, and M. E. Phelps. Model dependency and estimation reliability in measurement of cerebral oxygen utilization rate with oxygen-15 and dynamic positron emission tomography.J. Cereb. Blood Flow Metab. 6:105–119, 1986.

    PubMed  CAS  Google Scholar 

  31. Hudson, J. A., and D. B. Cater. An analysis of factors affecting tissue oxygen tension.Proc. R. Soc. Lond. B161:247, 1964.

    PubMed  CAS  Google Scholar 

  32. King, R. B., J. B. Bassingthwaighte, J. R. S. Hales, and L. B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons.Circ. Res. 57:285–295, 1985.

    PubMed  CAS  Google Scholar 

  33. King, R. B., G. M. Raymond, and J. B. Bassingthwaighte. Modeling blood flow heterogeneity.Ann. Biomed. Eng. 24: 352–372, 1996.

    Article  PubMed  CAS  Google Scholar 

  34. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue.J. Physiol. 52:409–415, 1919.

    PubMed  CAS  Google Scholar 

  35. Napper, S. A., and R. W. Schubert. Mathematical evidence for flow-induced changes in myocardial oxygen consumption.Ann. Biomed. Eng. 16:349–365, 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Page, E., L. P. McCallister, and B. Power. Stereological measurements of cardiac ultrastructures implicated in excitation-contraction coupling.Proc. Natl. Acad. Sci. U.S.A. 68:1465–1466, 1971.

    Article  PubMed  CAS  Google Scholar 

  37. Page, E., and L. P. McCallister. Quantitative electron microscopic description of heart muscle cells.Am. J. Cardiol. 31:172–181, 1973.

    Article  PubMed  CAS  Google Scholar 

  38. Popel, A. S. Analysis of capillary-tissue diffusion in multicapillary systems.Math. Biosci. 39:187–211, 1978.

    Article  Google Scholar 

  39. Popel, A. S. Theory of oxygen transport to tissue.Crit. Rev. Biomed. Eng. 17:257–321, 1989.

    PubMed  CAS  Google Scholar 

  40. Raichle, M. E., R. L. Grubb, Jr., J. O. Eichling, and M. M. Ter-Pogossian. Measurement of brain oxygen utilization with radioactive oxygen-15: experimental verification.J. Appl. Physiol. 40:638–640, 1976.

    PubMed  CAS  Google Scholar 

  41. Reneau, D. D., D. F. Bruley, and M. H. Knisely. A mathematical simulation of oxygen release, diffusion, and consumption in the capillaries and tissue of the human brain. In: Chemical engineering in medicine and biology. New York: Plenum Press, 1967, pp. 135–241.

    Google Scholar 

  42. Riveros-Moreno, V., and J. B. Wittenberg. The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions.J. Biol. Chem. 247:895–901, 1972.

    PubMed  CAS  Google Scholar 

  43. Rose, C. P., C. A. Goresky, and G. G. Bach. The capillary and sarcolemmal barriers in the heart: an exploration of labeled water permeability.Circ. Res. 41:515–533, 1977.

    PubMed  CAS  Google Scholar 

  44. Rose, C. P., and C. A. Goresky. Limitations of tracer oxygen uptake in the canine coronary circulation.Circ. Res. 56:57–71, 1985.

    PubMed  CAS  Google Scholar 

  45. Singh, M. P., M. Sharan, and A. Aminataei. Development of mathematical formulae for O2 and CO2 dissociation curves in the blood.IMA J. Math. Appl. Med. Biol. 6:25–46, 1989.

    Article  Google Scholar 

  46. Taegtmeyer, H. Carbohydrate interconversions and energy production.Circulation 72(Suppl. IV):1–8, 1985.

    Google Scholar 

  47. Tangelder, G. J., D. W. Slaaf, A. M. M. Muijtjens, T. Arts, M. G. A. oude Egbrink, and R. S. Reneman. Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery.Circ. Res. 59:505–514, 1986.

    PubMed  CAS  Google Scholar 

  48. Ter-Pogossian, M. M., J. O. Eichling, D. O. Davis, and M. J. Welch. The measurein vivo of regional oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15.J. Clin. Invest. 49:381–391, 1970.

    Article  PubMed  CAS  Google Scholar 

  49. Ter-Pogossian, M. M., and P. Herscovith. Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism.Semin. Nucl. Med. 15:377–394, 1985.

    Article  PubMed  CAS  Google Scholar 

  50. Thews, G. Die Sauerstoffdiffusion im Gehirn. Ein Betrag lur Frage der Sauerstroffversorgung der Organe.Pflügers Arch. 271:197, 1960.

    Article  CAS  Google Scholar 

  51. Wittenberg, B. A., and J. B. Wittenberg. Transport of oxygen in muscle.Am. Rev. Physiol. 51:857–878, 1989.

    Article  CAS  Google Scholar 

  52. Zierler, K. L. A critique of compartmental analysis.Ann. Rev. Biophys. Bioeng. 10:531–562, 1981.

    Article  CAS  Google Scholar 

  53. Adair, G. S. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin.J. Biol. Chem. 63:529, 1925.

    CAS  Google Scholar 

  54. Yipintsoi, T., P. D. Scanlon, and J. B. Bassingthwaighte. Density and water content of dog ventricular myocardium.Proc. Soc. Exp. Biol. Med. 141:1032–1035, 1972.

    PubMed  CAS  Google Scholar 

  55. Safford, R. E., E. A. Bassingthwaighte, and J. B. Bassingthwaighte. Diffusion of water in cat ventricular myocardium.J. Gen. Physiol. 72:513–538, 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Yipintsoi, T. & Bassingthwaighte, J.B. Nonlinear model for capillary-tissue oxygen transport and metabolism. Ann Biomed Eng 25, 604–619 (1997). https://doi.org/10.1007/BF02684839

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684839

Keywords

Navigation