Skip to main content
Log in

1H nmr study of heteroassociation of caffeine with acridine orange in aqueous solution

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular mechanism of the action of caffeine (CAF) as a complexing interceptor of aromatic ligands intercalated in DNA is considered using a typical intercalant — acridine orange (AO) dye. Hetero-association of CAF and AO was investigated by one- and two-dimensional H NMR spectroscopy (500 MHz). The concentration (at 298 and 308 K) and temperature dependences of the proton chemical shifts of molecules in aqueous solution were measured. The equilibrium constants of the CAF-AO hetero-association reactions at different temperatures and the limiting chemical shifts of the protons of the aromatic ligands of the associates were determined. The most plausible structure of the 1:1 CAF-AO helerocomplex in aqueous solution is suggested based on the calculated values of the induced proton chemical shifts of the molecules and the quantum mechanical screening curves for CAF and AO. The thermodynamic parameters of CAF-AO helerocomplex formation art calculated. The structural and thermodynamic analyses indicate that dispersion forces and hydrophobic interactions play a significant role in heterocomplex formation in aqueous salt solution. The relative contents of different types of associate in a mixed solution containing CAF and AO are estimated. The equilibrium of CAF-AO heteroassociates in solution is characterized in relation to temperature. Heteroassociation of CAF and AO molecules leads to decreased effective concentration of intercalant in solution and hence to decreased mutagenic activity of the dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Clementz and J. W. Dailey, Am. Fam. Physician, 37, 167–172 (1988).

    CAS  Google Scholar 

  2. M. D. Mashkovskii, Pharmaceuticals [in Russian], Vol. 2, Meditsina, Moscow (1985), p. 107.

  3. K. L. Beetham, P. M. Busse, and L. J. Tolmach, J. Cell Physiol., 115, 283–289 (1983).

    Article  CAS  Google Scholar 

  4. C. P. Selby and A. Sancar, Proc. Natl. Acad. Sci. USA, 87, 3522–3525 (1990).

    Article  CAS  Google Scholar 

  5. W. Witte and H. Bohme, Mut. Res., 16, 133–139 (1972).

    CAS  Google Scholar 

  6. H. Fritzshe, I. Petri, H. Schutz, et al., Biophys. Chem., 11, 109–119 (1980).

    Article  Google Scholar 

  7. S. L. Yao, A. J. Akhtar, K. A. McKenna, et al., Nat. Medicine, 2, No. 10, 1140–1142 (1996).

    Article  Google Scholar 

  8. J. S. DeFrank, W. Tang, and S. N. Powell, Cancer Res., 56, 5365–5368 (1996).

    Google Scholar 

  9. S. N. Powell, J. S. DeFrank, P. Counell, et al., ibid., 55, 1643–1648 (1995).

    CAS  Google Scholar 

  10. K. J. Russel, L. W. Wiens, G. W. Demers, et al., ibid., 55, 1642–1643 (1995).

    Google Scholar 

  11. Y. Sadzuka, E. Mochizuki, and Y. Tokino, Toxicol. Lett., 75, Nos. 1-3, 39–40 (1995).

    Article  CAS  Google Scholar 

  12. H. Kimura and T. Aoyama, J. Phannacobiodyn., 12, 589–595 (1989).

    CAS  Google Scholar 

  13. W. E. Ross, L. A. Zwelling, and K. W. Kohn, Int. J. Radial. Biol. Phys., 5, 1221–1224 (1979).

    CAS  Google Scholar 

  14. R. Ganapathi, D. Grabowski, H. Schmidt, et al.. Cancer Res., 46, 5553–5557 (1979).

    Google Scholar 

  15. G. Iliakis, M. Nusse, R. Ganapathi, et al.. Int. J. Radial. Biol. Phys., 12, 1987–1995 (1986).

    CAS  Google Scholar 

  16. F. Traganos, J. Karpuscinski, and Z. Darzynkiewicz, Cancer Res., 51, 3682–3698 (1991).

    CAS  Google Scholar 

  17. R. W. Larsen, R. Jasuja, R. Hetzler, et al., Biophys. J., 70, 443–452 (1996).

    Article  Google Scholar 

  18. J. Kapuscinski and M. Kimmel, Biophys. Chem., 46, 153–163 (1993).

    Article  CAS  Google Scholar 

  19. N. J. Baxter, M. P. Williamson, T. H. Lilley, and E. Haslam, J. Chem. Soc, Faraday Trans., 92, 231–234 (1996).

    Article  Google Scholar 

  20. F. Aradi and A. Foldesi, Magn. Res. Chem., 23, 375–378 (1985).

    Article  CAS  Google Scholar 

  21. F. Aradi and A. Foldesi, ibid., 27, 249–252 (1989).

    Article  CAS  Google Scholar 

  22. J.-S. Chen and J.-Ch. Shiao, J. Chem. Soc, Faraday Trans., 90, 429–433 (1994).

    Article  CAS  Google Scholar 

  23. K. Weller, H. Shutz, and I. Petri, Biophys. Chem., 19, 289–298 (1984).

    Article  CAS  Google Scholar 

  24. D. B. Davies, D. A. Veselkov, and A. N. Veselkov, Mol. Phys., 97, 439–451 (1999).

    Article  CAS  Google Scholar 

  25. A. N. Veselkov, L. N. Dymant, and É. L. Kulikov, Zh. Strukt. Khim., 20, No. 3, 43–46 (1985).

    Google Scholar 

  26. D. B. Davies, L. N. Djimant, and A. N. Veselkov, J. Chem. Soc, Faraday Trans., 92, 383–390 (1996).

    Article  Google Scholar 

  27. D. A. Veselkov, D. B. Davies, L. N. Dymant, and A. N. Veselkov, to appear in Molek. Biol.

  28. T. H. Lilley, H. Linsdell, and A. Maestre, J. Chem. Soc, Faraday Trans., 88, 2865–2870 (1992).

    Article  CAS  Google Scholar 

  29. A. L. Stone and D. F. Bradley, J. Am. Chem. Soc, 83, 3627–3634 (1961).

    Article  CAS  Google Scholar 

  30. A. N. Veselkov, L. N. Djimant, L. Karawajew, and E. L. Kulikov, Studia Biophysica, 106, 171–180 (1985).

    CAS  Google Scholar 

  31. L.-S. Kan, P. N. Borer, D. M. Cheng, and P. O. P. Ts'o, Biopolymers, 19, 1641–1654 (1980).

    Article  CAS  Google Scholar 

  32. C. Giessner-Prettre and B. Pullma, Quart. Rev. Biophys., 20, 113–172 (1987).

    CAS  Google Scholar 

  33. A. N. Veselkov, L. N. Dymant, P. A. Bolotin, et al., Zh. Strukt. Khim., 37, No. 1, 1243–1255 (1996).

    Google Scholar 

  34. A. Delbarre, B. P. Roques, J. B. Le Pecq, et al., Biophys. Chem., 4, 275–279 (1976).

    Article  CAS  Google Scholar 

  35. J. B. Chaires, Biopolymers, 24, 403–419 (1985).

    Article  CAS  Google Scholar 

  36. R. D. Ross and S. Subramanian, Biochemistry, 20, 3096–3102 (1981).

    Article  CAS  Google Scholar 

  37. H. P. Hopkins, J. Fumero, and W. D. Wilson, Biopolymers, 29, 445–459 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhumal Struktumoi Khimii, Vol. 41, No. 1, pp. 86-96, January–February, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselkov, D.A., Sigaev, V.A., Vysotskii, S.A. et al. 1H nmr study of heteroassociation of caffeine with acridine orange in aqueous solution. J Struct Chem 41, 72–80 (2000). https://doi.org/10.1007/BF02684731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684731

Keywords

Navigation