Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. M. F. Atiyah andW. V. D. Hodge, Integrals of the second kind on an algebraic variety,Ann. of Math.,62 (1955), 56–91.

    Article  Google Scholar 

  2. P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales,Publ. Math. I.H.E.S.,35 (1968), 107–126.

    MATH  Google Scholar 

  3. P. Deligne, Equations différentielles à points singuliers réguliers,Lectures Notes in mathematics,163, Springer, 1970.

  4. P. A. Griffiths, On the periods of certain rational integrals, I,Ann. of Math.,90, 3 (1969), 460–495.

    Article  Google Scholar 

  5. P. A. Griffiths, Periods of integrals on algebraic manifolds, III,Publ. Math. I.H.E.S.,38 (1970), 125–180.

    MATH  Google Scholar 

  6. A. Grothendieck, Le groupe de Brauer, III: Exemples et compléments.Dix exposés sur la cohomologie des schémas, North-Holland Publ. Co., 1968.

  7. A. Grothendieck, Un théorème sur les homomorphismes de schémas abéliens,Inv. Math.,2 (1966), 59–78.

    Article  MATH  Google Scholar 

  8. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero,Ann. of Math.,79 (1964), 109–326.

    Article  Google Scholar 

  9. W. V. D. Hodge,The theory and applications of harmonic integrals, Cambridge Univ. Press, 2e éd., 1952.

  10. N. Katz, Nilpotent connections and the monodromy theorem. Applications of a result of Turritin,Publ. Math. I.H.E.S.,39 (1971), 175–232.

    Google Scholar 

  11. M. Nagata, Imbedding of an abstract variety in a complete variety,J. Math. Kyoto,2, 1 (1962), 1–10.

    MATH  Google Scholar 

  12. A. Weil, Variétés kählériennes,Publ. Inst. Math. Univ. Nancago, VI, Paris, Hermann, 1958.

    Google Scholar 

  13. A. Borel, non publié.

  14. P. Deligne, Théorie de Hodge, I,Actes du Congrès international des mathématiciens, Nice, 1970.

  15. R. Godement, Topologie algébrique et théorie des faisceaux,Publ. Inst. Math. Univ. Strasbourg, XIII, Paris, Hermann, 1958.

    Google Scholar 

Download references

Authors

Additional information

Travail présenté comme thèse de doctorat à l’Université d’Orsay.

About this article

Cite this article

Deligne, P. Théorie de Hodge, II. Publications Mathématiques de L’Institut des Hautes Scientifiques 40, 5–57 (1971). https://doi.org/10.1007/BF02684692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684692

Navigation