This is a preview of subscription content, access via your institution.
Bibliography
S. Abhyankar, Resolution of singularities of arithmetical surfaces,Proc. Conf. on Arith. Alg. Geom. at Purdue. 1963.
M. Artin, The implicit function theorem in algebraic geometry,Proc. Colloq. Alg. Geom., Bombay, 1968.
M. Artin, Some numerical criteria for contractibility,Am. J. Math.,84 (1962), p. 485.
J. Benabou, Thèse, Paris, 1966.
F. Enriques andChisini,Teoria geometrica delle equazioni e delle funzioni algebriche, Bologna, 1918.
W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves,Ann. of Math. (forthcoming).
J. Giraud,Cohomologie non abélienne, University of Columbia.
A. Grothendieck, Techniques de descente et théorèmes d’existence en géométrie algébrique, IV,Sem. Bourbaki,221, 1960–1961.
R. Hartshorne, Residues and Duality,Springer Lecture Notes,20, 1966.
D. Knutson, Algebraic spaces,Thesis, M.I.T., 1968.
J. Lipman, Rational singularities,Publ. Math. I.H.E.S., no 36 (1969).
M. Lichtenbaum, Curves over discrete valuation rings,Am. J. Math.,90 (1968), p. 380.
W. Manger, Die Klassen von topologischen Abbildungen einer geschlossenen Fläche auf sich,Math. Zeit.,44 (1939), p. 541.
D. Mumford,Geometric Invariant Theory, Springer-Verlag, 1965.
D. Mumford,Notes on seminar on moduli problems, Supplementary mimeographed notes printed at A.M.S. Woods Hole Summer Institute, 1964.
D. Mumford, Picard groups of moduli problems,Proc. Conf. on Arith. Alg. Geom. at Purdue, 1963.
A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux,Publ. Math. I.H.E.S., no 21.
M. Raynaud, Spécialisation du foncteur de Picard,Comptes rendus Acad. Sci.,264, p. 941 and p. 1001.
I. Šafarevich, Lectures on minimal models,Tata Institute Lectures notes, Bombay, 1966.
M. Schlessinger,Thesis, Harvard.
J.-P. Serre,Rigidité du foncteur de Jacobi d’échelon n ≥ 3, app. à l’exposé 17 du séminaire Cartan 60/61.
F. Severi andLöffler,Vorlesungen über algebraische Geometrie, Teubner, 1924.
A. Weil, Modules des surfaces de Riemann,Sém. Bourbaki, 168, 1957–58.
Additional information
The first author wishes to thank the Institut des Hautes Études scientifiques, Bures-sur-Yvette, for support in this research andN. Katz, for his invaluable assistance in the preparation of this manuscript; the second author wishes to thank the Tata Institute of Fundamental Research, Bombay, and the Institut des Hautes Études scientifiques.
About this article
Cite this article
Deligne, P., Mumford, D. The irreducibility of the space of curves of given genus. Publications Mathématiques de l’Institut des Hautes Scientifiques 36, 75–109 (1969). https://doi.org/10.1007/BF02684599
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02684599
Keywords
- Irreducible Component
- Abelian Variety
- Finite Type
- Double Point
- Stable Curve