Skip to main content

Equivariant K-theory

This is a preview of subscription content, access via your institution.

References

  1. M. F. Atiyah, Power operations in K-theory,Quart. J. of Math. (Oxford),17 (1966), 165–193.

    MathSciNet  Article  MATH  Google Scholar 

  2. M. F. Atiyah,Lectures on K-theory, mimeographed, Harvard, 1964.

  3. M. F. Atiyah andR. Bott, On the periodicity theorem for complex vector bundles,Acta mathematica,112 (1964), 229–247.

    MathSciNet  Article  MATH  Google Scholar 

  4. M. F. Atiyah, R. Bott andA. Shapiro, Clifford modules,Topology,3 (Suppl. 1) (1964), 3–38.

    MathSciNet  Article  MATH  Google Scholar 

  5. M. F. Atiyah andF. Hirzebruch, Vector bundles and homogeneous spaces,Differential geometry, Proc. of Symp. in Pure Math.,3 (1961), Amer. Math. Soc., 7–38.

    MathSciNet  Article  MATH  Google Scholar 

  6. M. F. Atiyah, I. M. Singer, etc., The index of elliptic operators I, II (To appear).

  7. A. Borel et al., Seminar on transformation groups,Ann. of Math. Studies, no 46, Princeton, 1960.

  8. N. Bourbaki,Intégration, chap. 1–4, Paris, Hermann, 1952, A.S.I., 1175.

    Google Scholar 

  9. H. Cartan andS. Eilenberg,Homological algebra, Princeton University Press, 1956.

  10. S. Eilenberg andN. E. Steenrod,Foundations of algebraic topology, Princeton University Press, 1952.

  11. L. Illusie, Nombres de Chern et groupes finis (To appear).

  12. G. D. Mostow, Cohomology of topological groups and solvmanifolds,Ann. of Math.,73 (1961), 20–48.

    MathSciNet  Article  MATH  Google Scholar 

  13. R. S. Palais, The classification of G-spaces,Mem. Amer. Math. Soc., no 36, 1960.

  14. R. S. Palais, On the existence of slices for actions of non-compact Lie groups,Ann. of Math.,73 (1961), 295–323.

    MathSciNet  Article  MATH  Google Scholar 

  15. G. B. Segal, Classifying-spaces and spectral sequences,Publ. Math. Inst. des Hautes Études Scient. (Paris),34 (1968).

  16. G. B. Segal, The representation-ring of a compact Lie group,Publ. Math. Inst. des Hautes Études Scient. (Paris),34 (1968).

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Segal, G. Equivariant K-theory. Publications Mathématiques de l’Institut des Hautes Scientifiques 34, 129–151 (1968). https://doi.org/10.1007/BF02684593

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684593

Keywords

  • Exact Sequence
  • Vector Bundle
  • Line Bundle
  • Base Point
  • Spectral Sequence