Skip to main content
Log in

Adaptive refinement for convection-diffusion problems based on a defect-correction technique and finite difference method

Adaptive Gitterverfeinerung für Konvektions-Diffusions-Probleme durch Defektkorrektur und Differenzenverfahren

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A difference method is presented for singularly perturbed convection-diffusion problems with discretization error estimates of high order (orderp), which hold uniformly in the singular perturbation parameterε. The method is based on the use of a defect-correction technique and special adaptively graded and patched meshes, with meshsizes varying betweenh andε 3/2 h whenp=2, whereh is the meshsize, used in the part of the domain where the solution is smooth, andε 3/2 h is the final meshsize in the boundary layer. Similar constructions hold for interior layers. The correction operator is a monotone operator, enabling the estimate of the error of optimal order in maximum norm. The total number of meshpoints used in ad-dimensional problem isO(ε −s)h −d+O(h −d), wheres is 1/p or 1/2p, respectively in the case of boundary or interior layer.

Zusammenfassung

Für singulär gestörte Konvektions-Diffusions-Probleme wird ein Differenzenverfahren mit Verfahrenfehlerschätzungen hoher Ordnung (Ordnungp) vorgestellt, die gleichmäßig im Parameter der singulären Störung sind. Das Verfahren beruht auf einer Defektkorrektur-Technik und auf speziellen adaptiv geteilten und gestückelten Gittern, deren Gitterweiten im Fallp=2 zwischenh und 3/2 variieren; dabei isth die Weite in den Bereichen mit glatter Lösung und 3/2 die Endweite in der Grenzschicht. Für innere Schichten läßt sich die Konstruktion analog durchführen. Der Korrektur-Operator ist monoton, was eine optimale Fehlerschätzung im Sinne der Maximumnorm gestattet. Die Gesamtzahl von Gitterpunkten bei einemd-dimensionalen Problem beträgtO(h −d)+h −d O(ε −s), mits=1/p bzw. 1/2p für Randbzw. Innenschichten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, D., Southwell, R.: Relaxation method applied to determine the motion, in 2D, of viscous fluid past a fixed cylinder. J. Mech. Appl. Math.8, 129–145 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  2. Axelsson, O.: On the numerical solution of convection-diffusion equations. Comput. Math.13, 165–184 (1984).

    MathSciNet  Google Scholar 

  3. Axelsson, O.: A survey of numerical methods for convection diffusion equations. Report 8822, Department of Mathematics, Catholic University, Nijmegen.

  4. Axelsson, O., Carey, G. F.: On the numerical solution of two-point singularly perturbed boundary value problem. Comp. Math. Appl. Mech. Eng.50, 217–229 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  5. Axelsson, O., Gustafsson, I.: A modified upwind scheme for convective transport equation and the use of a conjugate gradient method for the solution of non-symmetric system of equations. J. Inst. Math. Appl.23, 321–337 (1979).

    Article  MATH  Google Scholar 

  6. Axelsson, O., Kolotilina, L.: Monotonicity and discretization error estimates. SIAM J. Numer. Anal.27, 1591–1611 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  7. Axelsson, O., Layton, W.: Defect-correction methods for convection dominated convection-diffusion problems. Math. Model. Numer. Anal.24, 423–455 (1990).

    MATH  MathSciNet  Google Scholar 

  8. Axelsson, O., Masenge, R.: Numerical treatment of boundary layers in two-point boundary value problems. Report 8331, Department of Mathematics, Catholic University, Nijmegen, The Netherlands.

  9. Boehmer, K., Stetter, H.: Defect correction methods. Theory and applications. Wien New York: Springer 1989 (Computing [Suppl] 5).

    Google Scholar 

  10. Brezzi, F., Marini, L., Pietra, P.: Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal.26, 1342–1355 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  11. Doolan, E., Miller, J., Schilders, W.: Unifrom numerical methods for problems with initial and boundary layers. Dublin: Boole Press 1980.

    Google Scholar 

  12. Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comp.60, 167–188 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  13. Ewing, R., Lazarov, R., Vassilevski, P.: Local refinement techniques for elliptic problems on cell-centered grids. Numer. Math.59, 431–452 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  14. Hemker, P.: The defect correction principle. An introduction to computational and asymptotic methods for boundary and interior layers, Lect. Notes BAIL II Conf., Dublin 1982. Boole Press Adv. Numer. Comput.4, 11–32 (1982).

    MathSciNet  Google Scholar 

  15. Hemker, P., Miller, J.: Numerical analysis of singular perturbation problems. Proceedings, Nijmegen, May–June 1978. London: Academic Press 1979.

    Google Scholar 

  16. Hemker, P., Zeeuw, P.: Defect correction for the solution of singular perturbation problem. Preprint NW 132/82 Mathematisch Centrum, Amsterdam 1982.

    Google Scholar 

  17. Il’in, A. M.: A difference scheme for differential equation with a small parameter at the highest derivative. Mat. Zametki6, 237–248 (1969) (in Russian).

    MATH  MathSciNet  Google Scholar 

  18. Johnson, C., Hansbo, P.: Adaptive finite element methods in computational mechanics. Comp. Mech. Appl. Mech. Eng.101, 143–181 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  19. Kellogg, R., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comp.32, 1025–1039 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  20. Lazarov, R., Mishev, I., Vassilevski, P.: Finite volume methods with local refinement for convection-diffusion problems. Computing53, 33–57 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  21. Roache, Patrick J.: Computational fluid dynamics, Albuquerque: Hermosa 1976.

    Google Scholar 

  22. Roos, H. G.: Ten ways to generate the II’in and related schemes, J. Comp. Appl. Math.53, 43–59 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  23. Samarskii, A.: On monotone difference scheme for elliptic and parabolic equations in the case of non-selfadjoint elliptic operator. Z. Vycisl. Math. Math. Fiz.5, 548–551 (1965).

    MathSciNet  Google Scholar 

  24. Shishkin, G.: Methods of constructing grid approximations for singularly perturbed boundary value problem. Condensing grid methods. J. Num. Anal. Math. Modell.7, 537–562 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  25. Shishkin, G.: Iterative grid methods for singularly perturbed elliptic equations degenerating into zero-order ones, Russ. J. Numer. Anal. Math. Modelling8, 341–369 (1993).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axelsson, O., Nikolova, M. Adaptive refinement for convection-diffusion problems based on a defect-correction technique and finite difference method. Computing 58, 1–30 (1997). https://doi.org/10.1007/BF02684469

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684469

AMS Subject Classifications

Key words

Navigation