Skip to main content
Log in

Avoiding slave points in an adaptive refinement procedure for convection-diffusion problems in 2D

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A finite difference method is presented for singularly perturbed convection-diffusion problems with discretization error estimate of nearly second order. In a standard patched adaptive refinement method certain slave nodes appear where the approximation is done by interpolating the values of the approximate solution at adjacent nodes. This deteriorates the accuracy of truncation error. In order to avoid the slave points we change the stencil at the interface points from a cross to a skew one. The efficiency of this technique is illustrated by numerical experiments in 2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelsson, O., Layton, W.: Defect-correction methods for convection dominated convection-diffusion problems. Math. Modell. Numer. Anal.24, 423–455 (1990).

    MATH  Google Scholar 

  2. Axelsson, O., Nikolova, M.: Adaptive refinement for convection-diffusion problems based on a defect-correction technique and finite difference method. Computing58, 1–30 (1997).

    Article  MATH  Google Scholar 

  3. Boehmer, K., Stetter, H.: Defect correction methods. Theory and applications. Computing [Suppl.] 5. Wien New York: Springer 1984.

    Google Scholar 

  4. Collatz, L.: Funktionalanalysis und numerische Mathematik. Berlin Göttingen Heidelberg: Springer 1964.

    MATH  Google Scholar 

  5. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational differential equations. Cambridge: Cambridge University Press 1996.

    MATH  Google Scholar 

  6. Han, H., Kellogg, R.: Differentiability properties of solution of the equation −ɛ 2Δu+ru=f in a square, SIAM J. Math. Anal.21, 394–408 (1990).

    Article  MATH  Google Scholar 

  7. Hemker, P.: The defect correction principle. An introduction to computational and asymptotic methods for boundary and interior layers. Lect. Notes BAIL II Conf., Dublin 1982. Adv. Numer. Comput.4, 11–32 (1982).

    Google Scholar 

  8. Hemker, P.: Mixed defect correction iteration for the solution of a singular perturbation problem. Computing [Suppl.]5, 123–145 (1984).

    Google Scholar 

  9. Hemker, P., Miller, J.: Numerical analysis of singular perturbation problems. Proceedings, Nijmegen, May–June 1978. Academic Press: London 1979.

    Google Scholar 

  10. Kellogg, R., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comp.32, 1025–1039 (1978).

    Article  MATH  Google Scholar 

  11. Linss, T., Stynes, M.: A hybrid difference scheme on a Shishkin mesh for linear convection-diffusion problems. Preprint 1997-2, Department of Mathematics, University College, Cork, Ireland (submitted for publication).

  12. Miller, J., O’Riordan, E., Shishkin, G.: Fitted numerical methods for singularly perturbed problems. Singapore: World Scientific, 1996.

    Google Scholar 

  13. Morton, K.: Numerical solution of convection-diffusion problems. Chapman and Hall: London 1995.

    Google Scholar 

  14. Roos, H.: Layer-adapted grids for singular perturbation problems, Report MATH-NM-03-1997, Technische Universität Dresden, January 1997.

  15. Roos, H., Stynes, M., Tobiska, L.: Numberical methods for singularly perturbed differential equations. Berlin Heidelberg New York: Springer 1996.

    Google Scholar 

  16. Samarskii, A.: On monotone difference scheme for elliptic and parabolic equations in the case of a non-selfadjoint elliptic operator. Z. Vycisl. Math. Fiz.5, 548–551 (1965).

    Google Scholar 

  17. Samarskii, A.: Theory of the finite difference schemes. Moskow: Nauka 1977 (in Russian).

    Google Scholar 

  18. Shih, S. D., Kellogg, R. B.: Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal.18, 567–579 (1987).

    Article  Google Scholar 

  19. Stynes, M., O’Riordan, E.: A uniform convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J. Math. Anal. Appl.214, 36–54 (1997).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axelsson, O., Nikolova, M. Avoiding slave points in an adaptive refinement procedure for convection-diffusion problems in 2D. Computing 61, 331–357 (1998). https://doi.org/10.1007/BF02684384

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684384

AMS Subject Classifications

Key words

Navigation