Skip to main content
Log in

Spanning trees and shortest paths in monge graphs

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We investigate three problems onMonge graphs, i.e. complete, undirected weighted graphs whose distance matrix is a Monge matrix: (A) the minimum spanning tree problem, (B) the problem of computing all-pairs shortest paths and (C) the problem of determining a minimum weighted 1-to-all shortest path tree. For all three problems best possible algorithms (in terms of complexity) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Klawe, M. M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithm. Algorithmica2, 195–208 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  2. Burkard, R. E.: Special cases of the travelling salesman problem and heuristics. Acta Math. Appl. Sin.6, 273–288 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  3. Burkard, R. E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discr. Appl. Math.70, 95–161 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  4. Burkard, R. E., Deĭneko, V., van Dal, R., van der Veen, J. A. A., Woeginger, G. J.: Well-solvable cases of the TSP: A survey. SFB-Report No. 52, SFB ‘Optimierung und Kontrolle’, Institute of Mathematics, University of Technology, Graz, Austria, December 1995, submitted for publication.

  5. Dijkstra, E. W.: A note on two problems in connection with graphs. Numer. Math.1, 269–271 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  6. Floyd, R. W.: Algorithm 97 (Shortest Path). Comm. ACM5, 345 (1962).

    Article  Google Scholar 

  7. Fredman, M. L., Tarjan, R. E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach.34, 596–615 (1987).

    MathSciNet  Google Scholar 

  8. Gabow, H. N., Galil, Z., Spencer, T., Tarjan, R. E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica6, 109–122 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  9. Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica44, 305–321 (1995).

    Article  MathSciNet  Google Scholar 

  10. Klein, P., Tarjan, R. E.: A randomized linear-time algorithm for finding minimum spanning trees. Proc. 26th Annual Symposium on Theory of Computing, pp. 9–15 (1994).

  11. Pferschy, U., Rudolf, R., Woeginger, G. J.: Monge matrices make maximization manageable. Oper. Res. Lett.16, 245–254 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  12. Prim, R. C.: Shortest connection networks and some generalizations. Bell System Tech. J.36, 1389–1401 (1957).

    Google Scholar 

  13. Supnick, F.: Extreme Hamiltonian lines. Ann. Math.66, 179–201 (1957).

    Article  MathSciNet  Google Scholar 

  14. Wilber, R.: The concave least-weight subsequence problem revisited. J. Algorithms9, 418–425 (1988).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the Spezialforschungsbereich F 003 ‘Optimierung und Kontrolle’/Projektbereich Diskrete Optimierung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudás, T., Rudolf, R. Spanning trees and shortest paths in monge graphs. Computing 60, 109–119 (1998). https://doi.org/10.1007/BF02684360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684360

AMS Subject Classifications

Key words

Navigation