Skip to main content
Log in

Denoising with higher order derivatives of bounded variation and an application to parameter estimation

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Regularization with functions of bounded variation has been proven to be effective for denoising signals and images. This nonlinear regularization technique, in contrast with linear regularization techniques like Tikhonov regularization, has the advantage that discontinuities in signals and images can be located very precisely. In this paper bounded variation regularization is generalized to functions with higher order derivatives of bounded variation. This concept is applied to locate discontinuities in derivatives, which has important applications in parameter estimation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhoui, V., Pozo, R., Romine, Ch., van der Vorst, H.: TEMPLATES for the solution of linear systems: building blocks for iterative methods. Software Package for the solution of linear systems.

  2. Deimling, K.: Nonlinear functional analysis. Berlin, Heidelberg, New York: Springer 1980.

    Google Scholar 

  3. Dobson, D., Santosa, F.: An image enhancement technique for electrical impedance tomography. Inverse Problems10, 317–334 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobson, D., Scherzer, O.: Analysis of regularized total variation penalty methods for denoising. Inverse Problems12, 601–617 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  5. Dobson, D., Vogel, C. R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal.34, 1779–1791 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  6. Engl, H. W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularization of non-linear ill-posed problems. Inverse Problems5, 523–540 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  7. Evans, L. C., Gariepy, R. F.: Measure theory and fine properties of functions. Ann Arbor: CRC Press 1995.

    Google Scholar 

  8. Groetsch, C. W.: Spectral methods for linear inverse problems with unbounded operators. J. Approx. Theory70, 16–28 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  9. Isakov, V.: Inverse source problems. Rhode Island: AMS 1990.

    MATH  Google Scholar 

  10. Kohn, R. V., Lowe, B. D.: A variational method for parameter identification. RAIRO. Math. Modell. Numer. Anal.22, 119–158 (1988).

    MATH  MathSciNet  Google Scholar 

  11. Kunisch, K.: Inherent identifiability of parameters in elliptic differential equations. J. Math. Anal. Appl.132, 453–472 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. Morel, J.-M., Solimini, S.: Variational Methods in Image Segmentation. Basel: Birkhäuser 1995.

    Google Scholar 

  13. Neubauer, A.: Tikhonov regularisation for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation. Inverse Problems5, 541–557 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  14. Osher, S., Rudin, L.: Feature oriented image enhancement using shock filters. SIAM J. Numer. Anal.27, 919–940 (1990).

    Article  MATH  Google Scholar 

  15. Scherzer, O., Engl, H. W., Kunisch, K.: Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal.30, 1796–1838 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  16. Vainikko, G.: On the discretization and regularization of ill-posed problems with noncompact operators. Num. Funct. Anal. Opt.13, 381–396 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  17. Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. Comput.17, 227–238 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  18. Weidmann, J.: Linear operators in Hilbert spaces. Berlin, Heidelberg, New York, Tokyo: Springer 1990.

    Google Scholar 

  19. Ziemer, W. P.: Weakly Differentiable functions. Berlin, Heidelberg, New York, Tokyo: Springer 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, Grant J01088-TEC; most of this work has been done, when O.S. visited the Department of Mathematics, College Station, Texas 77843-3368, USA. Present address: Institut für Industriemathematik, Universität Linz, Altenberger Str. 69, A-4040 Linz, Austria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherzer, O. Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998). https://doi.org/10.1007/BF02684327

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684327

AMS Subject Classifications

Key words

Navigation