Abstract
Regularization with functions of bounded variation has been proven to be effective for denoising signals and images. This nonlinear regularization technique, in contrast with linear regularization techniques like Tikhonov regularization, has the advantage that discontinuities in signals and images can be located very precisely. In this paper bounded variation regularization is generalized to functions with higher order derivatives of bounded variation. This concept is applied to locate discontinuities in derivatives, which has important applications in parameter estimation problems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhoui, V., Pozo, R., Romine, Ch., van der Vorst, H.: TEMPLATES for the solution of linear systems: building blocks for iterative methods. Software Package for the solution of linear systems.
Deimling, K.: Nonlinear functional analysis. Berlin, Heidelberg, New York: Springer 1980.
Dobson, D., Santosa, F.: An image enhancement technique for electrical impedance tomography. Inverse Problems10, 317–334 (1994).
Dobson, D., Scherzer, O.: Analysis of regularized total variation penalty methods for denoising. Inverse Problems12, 601–617 (1996).
Dobson, D., Vogel, C. R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal.34, 1779–1791 (1997).
Engl, H. W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularization of non-linear ill-posed problems. Inverse Problems5, 523–540 (1989).
Evans, L. C., Gariepy, R. F.: Measure theory and fine properties of functions. Ann Arbor: CRC Press 1995.
Groetsch, C. W.: Spectral methods for linear inverse problems with unbounded operators. J. Approx. Theory70, 16–28 (1992).
Isakov, V.: Inverse source problems. Rhode Island: AMS 1990.
Kohn, R. V., Lowe, B. D.: A variational method for parameter identification. RAIRO. Math. Modell. Numer. Anal.22, 119–158 (1988).
Kunisch, K.: Inherent identifiability of parameters in elliptic differential equations. J. Math. Anal. Appl.132, 453–472 (1988).
Morel, J.-M., Solimini, S.: Variational Methods in Image Segmentation. Basel: Birkhäuser 1995.
Neubauer, A.: Tikhonov regularisation for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation. Inverse Problems5, 541–557 (1989).
Osher, S., Rudin, L.: Feature oriented image enhancement using shock filters. SIAM J. Numer. Anal.27, 919–940 (1990).
Scherzer, O., Engl, H. W., Kunisch, K.: Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal.30, 1796–1838 (1993).
Vainikko, G.: On the discretization and regularization of ill-posed problems with noncompact operators. Num. Funct. Anal. Opt.13, 381–396 (1992).
Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. Comput.17, 227–238 (1996).
Weidmann, J.: Linear operators in Hilbert spaces. Berlin, Heidelberg, New York, Tokyo: Springer 1990.
Ziemer, W. P.: Weakly Differentiable functions. Berlin, Heidelberg, New York, Tokyo: Springer 1980.
Author information
Authors and Affiliations
Additional information
This work is supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, Grant J01088-TEC; most of this work has been done, when O.S. visited the Department of Mathematics, College Station, Texas 77843-3368, USA. Present address: Institut für Industriemathematik, Universität Linz, Altenberger Str. 69, A-4040 Linz, Austria.
Rights and permissions
About this article
Cite this article
Scherzer, O. Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998). https://doi.org/10.1007/BF02684327
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02684327