Skip to main content
Log in

Propagation on a central fiber surrounded by inactive fibers in a multifibered bundle model

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We studied uniform propagation on a central active fiber surrounded by inactive fibers in a multifibered bundle model lying in a large volume conductor. The behavior of a fully active bundle is considered in a companion paper. The bundle is formed by concentric layers of small cylindrical fibers (radius 5 μm), with a uniform minimum distance (d) between any two adjacent fibers, to yield a bundle radius of about 72μm. Individual vidual fibers are identical continuous cables of excitable membrane based on a modified Beeler-Reuter model. The intracellular volume fraction (f i) increases to a maximum of about 90% asd is reduced and remains unchanged ford<0.01 μm. In the range ofd<0.01 μm, the central fiber is effectively shielded from external effects by the first concentric layer of inactive fibers, and a large capacitive load current flows across the surrounding inactive membranes. In addition, the fiber proximity produces a circumferentially nonuniform, current density (proximity effect) that is equivalent to an increased average longitudinal interstitial resistance. The conduction velocity is reduced asd becomes smaller in the range ofd<0.1 μm, the interstitial potential becomes larger, and both the maximum rate of rise and time constant of the foot of the upstroke are increased. On the other hand, ford>0.1 μm, there are negligible changes in the shape of the upstroke, and the, behavior of the central fiber is close to that of a uniform cable in a restricted volume conductor. Ford larger than about 1.2 μm, the active fiber environment is close to an unbounded isotropic volume conductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeler G. W., and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibers.J. Physiol. (Lond.), 268:177–210, 1977.

    CAS  Google Scholar 

  2. Buchthal, F., and O. Steen-Knudsen. Impulse propagation in striated muscle fibers and the role of the internal current inactivation.Ann. N.Y. Acad. Sci. 81:422–445, 1959.

    Article  PubMed  CAS  Google Scholar 

  3. Cole, K. S., C. S. Li, and A. F. Bak. Experimental analogues for tissues.Exp. Neurol. 24:459–473, 1969.

    Article  PubMed  CAS  Google Scholar 

  4. Drouhard, J. P., and F. A. Roberge. Revised formulation of the Hodgkin-Huxley equations of the sodium current in cardiac cells.Comput. Biomed. Res. 20:333–350, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Henriquez, C. S., N. Trayanova, and R. Plonsey. Potential and current distributions in a cylindrical bundle of cardiac tissue.Biophys. J. 53:907–918.

  6. Henriquez, C. S., and R. Plonsey. Simulation of propagation along a cylindrical bundle of cardiac tissues. I. Mathematical formulation.IEEE Trans. Biomed. Eng. 37: 850–860, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Henriquez, C. S., and R. Plonsey. Simulation of propagation along a cylindrical bundle of cardiac tissue. II. Results of simulation.IEEE Trans. Biomed. Eng. 37:861–875.

  8. Hogues, H., L. J. Leon, and F. A. Roberge. A model study of electric field interactions between cardiac myocytes.IEEE Trans. Biomed. Eng. 39: 1232–1243, 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Jack, J. J. B., D. Noble, and R. W. Tsien.Electric Current Flow in Excitable Cells Oxford, Clarendon Press, 1975, 502 pp.

    Google Scholar 

  10. Kleber, A. G., and C. B. Riegger. Electrical constants of arterially perfused rabbit papillary muscle.J. Physiol. (Lond.). 385:307–324, 1986.

    Google Scholar 

  11. Knisley, S. B., T. Maruyama, and J. W. Buchanan. Interstitial potential during propagation in bathed ventricular muscle.Biophys. J. 59:509–515, 1991.

    PubMed  CAS  Google Scholar 

  12. Leon, L. J., and F. A. Roberge. A new cable model formulation based on Green's theorem.Ann. Biomed. Eng. 18:1–17, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Leon, L. J., and F. A. Roberge. A model study of extracellular stimulation of cardiac cells.IEEE Trans. Biomed. Eng. 40:1307–1319, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Luo, C.-H., and Y. Rudy. A dynamic model of the cardiac action potential. I. Simulations of ionic currents and concentration changes.Circ. Res. 74:1071–1096, 1994.

    PubMed  CAS  Google Scholar 

  15. Milton, R. L., R. T. Mathias, and R. S. Eisenberg. Electrical properties of the myotendon region of frog twitch muscle fibers measured in the frequency domain.Biophys. J. 48:253–267, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Roberge, F. A., A. Vinet, and B. Victorri. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.Circ. Res. 58:461–475, 1986.

    PubMed  CAS  Google Scholar 

  17. Rosenfalck, P.. Intra- and extracellular potential fields of active nerve and muscle fibersActa Physiol. Scand. Suppl. 321:1–168, 1969.

    CAS  Google Scholar 

  18. Roth, B. J.. Action potential propagation in a thick strand of cardiac muscle.Circ. Res. 68:162–173, 1991.

    PubMed  CAS  Google Scholar 

  19. Sommer, J. R.. Implications of structure and geometry on cardiac electrical activity.Ann. Biomed. Eng. 11:149–157, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Sommer, J. R., and B. Scherer. Geometry of cell bundle appositions in cardiac muscle: Light microscopy.Am. J. Physiol. 248:H792-H803, 1985.

    PubMed  CAS  Google Scholar 

  21. Spach, M. S., and R. C. Barr. Ventricular intramural and epicardial potential distribution during ventricular activation and repolarization in the intact dog.Circ. Res. 37:243–257, 1975.

    PubMed  CAS  Google Scholar 

  22. Spach, M. S., and J. M. Kootsey. The nature of electrical propagation in cardiac muscle.Am. J. Physiol. 244:H3-H22, 1983.

    PubMed  CAS  Google Scholar 

  23. Suenson, M.: Interaction between ventricular cells during the early part of excitation in the ferret heart.Acta Physiol. Scand. 125:81–90, 1985.

    PubMed  CAS  Google Scholar 

  24. Taccardi, B., L. S. Green, P. R. Ershler, and R. L. Lux. Epicardial potential mapping: Effects of conducting media.Circulation 80:II-134 1989.

    Google Scholar 

  25. Trayanova, N., C. S. Henriquez, and R. Plonsey. Extracellular potentials, and currents of a single active fiber in a restricted volume conductor.Ann. Biomed. Eng. 18:219–238, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Vander Ark, C. R., and E. W. Reynolds, Jr. An experimental study of propagated electrical activity in the canine heart.Circ. Res. 26:451–460, 1970.

    PubMed  CAS  Google Scholar 

  27. Vigmond, E. J., and B. L. Bardakjian. The effect of morphological interdigitation on field coupling between smooth muscle cells.IEEE Trans. Biomed. Eng. 42:162–171, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, S., L.J. Leon, and F. A. Roberge. Interactions between adjacent fibers in a cardiac muscle bundle.Ann. Biomed. Eng. 24:662–674.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberge, F.A., Wang, S., Hogues, H. et al. Propagation on a central fiber surrounded by inactive fibers in a multifibered bundle model. Ann Biomed Eng 24, 647–661 (1996). https://doi.org/10.1007/BF02684178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684178

Keywords

Navigation