Skip to main content
Log in

Laser generation and detection of ultrasound in concrete

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Laser ultrasonic techniques are used to examine the propagation of ultrasonic waves in concrete. This optical methodology provides a repeatable, broad band generation source and an absolute detection system that does not interfere with the process being monitored. The presence of aggregate, in addition to voids and flaws, can cause wave scattering in concrete. Fast Fourier Transform techniques are used to determine the effect of aggregate size and propagation distance on the frequency content of both surface and body waves. This paper examines the scattering of ultrasonic waves in undamaged concrete and establishes the fundamentals for the application of laser ultrasonics for the material characterization and nondestructive evaluation of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Lew, ed., Nondestructive Testing, ACI SP-112 (American Concrete Institute, Detroit, MI, 1988).

    Google Scholar 

  2. V. M. Maholtra and N. J. Carino, eds., CRC Handbook on NDT of Concrete, (CRC Press, 1991).

  3. S. Popovics, J. L. Rose, and J. S. Popovics, The behavior of ultrasonic pulses in concrete, Cement Concrete Res. 20: 259–270 (1990).

    Article  Google Scholar 

  4. P. A. Gaydecki F. M. Burdekin, W. Damaj, D. G. Johns, and P. A. Payne. The propagation and attenuation of medium-frequency ultrasonic waves in concrete: A signal analytical approach. Measure. Sci. Technol. 3(1):126–134 (1992).

    Article  Google Scholar 

  5. Y. H. Kim, S. Lee, and H. C. Kim, Attenuation and dispersion of elastic waves in multi-phase-media, J. Phys. D: Appl. Phys. 24(10):1722–1728 (1991).

    Article  Google Scholar 

  6. C. G. Tasker, J. M. Milne, and R. L. Smith, Recent work at the national NDT centre on concrete inspection, Brit. J. NDT 32(7): 355–359 (1990).

    Google Scholar 

  7. M. Sansalone, and N. J. Carino, Detecting delaminations in concrete slabs with and without overlays using the impact-echo method, ACI Mater. J. 86:175–184 (1989).

    Google Scholar 

  8. Y. Lin, and M. Sansalone, Detecting flaws in concrete beams and columns using the impact-echo method, ACI Mater. J. 89:394–405 (1992).

    Google Scholar 

  9. C.B. Scruby, Some applications of laser ultrasound, Ultrasonics, 27:195–209 (1989).

    Article  Google Scholar 

  10. D. A. Bruttomesso, L. J. Jacobs, and R. D. Costley, Development of an interferometer for acoustic emission testing. J. Engin. Mech. 119(11):2303–2316 (1993).

    Article  Google Scholar 

  11. P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror, Appl. Phys. Lett. 67(22):3251–3253 (1995).

    Article  Google Scholar 

  12. R. J. Higgins, Digital Signal Processing in VLSI (Prentice Hall, NJ, 1990).

    Google Scholar 

  13. J. D. Achenbach, Wave Propagation in Elastic Solids, (North-Holland, Amsterdam, 1973), pp. 26–29.

    MATH  Google Scholar 

  14. E. P. Papadakis, Scattering in polycrystalline media, in Methods of Experimental Physics, Vol. 19, P. D. Edmonds, ed. (Academic Press, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, L.J., Whitcomb, R.W. Laser generation and detection of ultrasound in concrete. J Nondestruct Eval 16, 57–65 (1997). https://doi.org/10.1007/BF02683878

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02683878

Key words

Navigation