Skip to main content
Log in

Conservation laws with a random source

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

We study the scalar conservation law with a noisy nonlinear source, namely,u l + f(u)x = h(u, x, t) + g(u)W(t), whereW(t) is the white noise in the time variable, and we analyse the Cauchy problem for this equation where the initial data are assumed to be deterministic. A method is proposed to construct approximate weak solutions, and we then show that this yields a convergent sequence. This sequence converges to a (pathwise) solution of the Cauchy problem. The equation can be considered as a model of deterministic driven phase transitions with a random perturbation in a system of two constituents. Finally we show some numerical results motivated by two-phase flow in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bensoussan, R. Glowinski, A. Rascanu, Approximation of some stochastic differential equations by the splitting up method, Appl. Math. Optim. 25 (1992), 81–106.

    Article  MATH  Google Scholar 

  2. L. Bertini, N. Cancrini, G. Jona-Lasinio, The stochastic Burgers equation, Comm. Math. Phys. 165 (1994), 211–232.

    Article  MATH  Google Scholar 

  3. Z. Brzezniak, M. Capinski, F. Flandoli, Stochastic partial differential equations and turbulence, Math. Mod. Methods Appl. Sci. 1 (1991), 41–59.

    Article  MATH  Google Scholar 

  4. A. V. Bulinskii, S. A. Molchanov, Asymptotical normality of a solution of Burgers’ equation with random initial data, Theory Probab. Appl. 36 (1992), 217–236.

    Article  Google Scholar 

  5. J. M. Burgers, The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974.

    MATH  Google Scholar 

  6. M. Crandall, A. Majda, The method of fractional steps for conservation laws, Numer. Math. 34 (1980), 285–314.

    Article  MATH  Google Scholar 

  7. J.-D. Fournier, U. Frisch, L’équation de Burgers déterministe et statistique, J. Méc. Théor. Appl. 2 (1983), 699–750.

    MATH  Google Scholar 

  8. S. K. Godunov, Finite difference methods for numerical computations of discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 47 (1959), 271–295.

    Google Scholar 

  9. S. Gurbatov, A. Malakov, A. Saichev, Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles, Manchester University Press, Manchester, 1991.

    MATH  Google Scholar 

  10. S. N. Gurbatov, A. I. Saichev, Degeneracy of one-dimensional acoustic turbulence at large Reynolds numbers, Soviet Phys. JETP 53 (1981), 347–354.

    Google Scholar 

  11. H. Holden, L. Holden, First-order nonlinear scalar hyperbolic conservation laws in one dimension, in Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (S. Albeverio, J. E. Fenstad, H. Holden, T. Lindstrøm, eds.), Cambridge University Press, Cambridge, 1992, pp. 480–510.

    Google Scholar 

  12. H. Holden, L. Holden, R. Høegh-Krohn, A numerical method for first-order nonlinear scalar conservation laws in one-dimension, Comput. Math. Appl. 15 (1988), 595–602.

    Article  MATH  Google Scholar 

  13. H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, T.-S. Zhang, The Burgers equation with a noisy force, Comm. Partial Differential Equations 19 (1994), 119–141.

    Article  MATH  Google Scholar 

  14. H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, T.-S. Zhang, The stochastic Wick-type Burgers equation, in Stochastic Partial Differential Equations (A. Etheridge, ed.), London Mathematical Society Lecture Note Series, Vol. 216, Cambridge University Press, Cambridge, 1995, pp. 141–161.

    Google Scholar 

  15. H. Holden, N. H. Risebro, Stochastic properties of the scalar Buckley-Leverett equation. SIAM J. Math. Anal. 51 (1991), 1472–1488.

    Article  MATH  Google Scholar 

  16. H. Holden, N. H. Risebro, A stochastic approach to conservation laws, Proc. Third International Conference on Hyperbolic Problems. Theory. Numerical Methods and Applications, Uppsala, 1990 (B. Engquist, B. Gustafsson, eds.), Studentlitteratur/Chartwell-Bratt, Lund-Bromley, 1991, pp. 575–587.

    Google Scholar 

  17. H. Holden, N. H. Risebro, A fractional steps method for scalar conservation laws without the CFL condition, Math. Comp. 60 (1993), 221–232.

    Article  MATH  Google Scholar 

  18. M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing surfaces, Phys. Rev. Lett. 56 (1986), 889–892.

    Article  MATH  Google Scholar 

  19. S. Kida, Asymptotic properties of Burgers turbulence, J. Fluid. Mech. 93 (1979), 337–377.

    Article  MATH  Google Scholar 

  20. P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  21. H. Konno, On stochastic Burgers equation, J. Phys. Soc. Japan 54 (1985), 4475–4478.

    Article  Google Scholar 

  22. H. Kunita, First-order stochastic partial differential equations, in Stochastic Analysis, Taniguchi Symposium, Katata and Kyoto, 1982 (K. Ito, ed.), North-Holland, Amsterdam, 1984 pp. 249–269.

    Google Scholar 

  23. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  24. R. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1991.

    Google Scholar 

  25. B. J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), 59–69.

    Article  MATH  Google Scholar 

  26. E. Medina, T. Hwa, M. Kardar, T.-C. Zhang, Burgers equation with correlated noise: Renormalizationgroup analysis and applications to directed polymers and interface growth, Phys. Rev. 39A (1989), 3053–3075.

    Google Scholar 

  27. T. Musha, Y. Kosugi, G. Matsumoto, M. Suzuki, Modulation of the time relation of action potential impulses propagating along the axon, IEEE Trans. Biomed. Engrg. 28 (1981), 616–623.

    Article  Google Scholar 

  28. H. Nakazawa, Stochastic Burgers’ equation in the inviscid limit, Adv. in Appl. Math. 3 (1982), 18–42.

    Article  MATH  Google Scholar 

  29. S. F. Shandarin, Ya. B. Zeldovich, The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium, Rev. Mod. Phys. 61 (1989), 185–220.

    Article  Google Scholar 

  30. Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of Brownian motion, Comm. Math. Phys. 148 (1992), 623–641.

    Article  MATH  Google Scholar 

  31. Ya. G. Sinai, Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Stat. Phys. 64 (1991), 1–12.

    Article  MATH  Google Scholar 

  32. Ya. G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Comm. Math. Phys. 148 (1992), 601–621.

    Article  MATH  Google Scholar 

  33. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by VISTA (a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap, Statoil) and NAVF (the Norwegian Research Council for Science and the Humanities).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, H., Risebro, N.H. Conservation laws with a random source. Appl Math Optim 36, 229–241 (1997). https://doi.org/10.1007/BF02683344

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02683344

Key Words

AMS Classification

Navigation