Abstract
We study the scalar conservation law with a noisy nonlinear source, namely,u l + f(u)x = h(u, x, t) + g(u)W(t), whereW(t) is the white noise in the time variable, and we analyse the Cauchy problem for this equation where the initial data are assumed to be deterministic. A method is proposed to construct approximate weak solutions, and we then show that this yields a convergent sequence. This sequence converges to a (pathwise) solution of the Cauchy problem. The equation can be considered as a model of deterministic driven phase transitions with a random perturbation in a system of two constituents. Finally we show some numerical results motivated by two-phase flow in porous media.
Similar content being viewed by others
References
A. Bensoussan, R. Glowinski, A. Rascanu, Approximation of some stochastic differential equations by the splitting up method, Appl. Math. Optim. 25 (1992), 81–106.
L. Bertini, N. Cancrini, G. Jona-Lasinio, The stochastic Burgers equation, Comm. Math. Phys. 165 (1994), 211–232.
Z. Brzezniak, M. Capinski, F. Flandoli, Stochastic partial differential equations and turbulence, Math. Mod. Methods Appl. Sci. 1 (1991), 41–59.
A. V. Bulinskii, S. A. Molchanov, Asymptotical normality of a solution of Burgers’ equation with random initial data, Theory Probab. Appl. 36 (1992), 217–236.
J. M. Burgers, The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974.
M. Crandall, A. Majda, The method of fractional steps for conservation laws, Numer. Math. 34 (1980), 285–314.
J.-D. Fournier, U. Frisch, L’équation de Burgers déterministe et statistique, J. Méc. Théor. Appl. 2 (1983), 699–750.
S. K. Godunov, Finite difference methods for numerical computations of discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 47 (1959), 271–295.
S. Gurbatov, A. Malakov, A. Saichev, Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles, Manchester University Press, Manchester, 1991.
S. N. Gurbatov, A. I. Saichev, Degeneracy of one-dimensional acoustic turbulence at large Reynolds numbers, Soviet Phys. JETP 53 (1981), 347–354.
H. Holden, L. Holden, First-order nonlinear scalar hyperbolic conservation laws in one dimension, in Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (S. Albeverio, J. E. Fenstad, H. Holden, T. Lindstrøm, eds.), Cambridge University Press, Cambridge, 1992, pp. 480–510.
H. Holden, L. Holden, R. Høegh-Krohn, A numerical method for first-order nonlinear scalar conservation laws in one-dimension, Comput. Math. Appl. 15 (1988), 595–602.
H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, T.-S. Zhang, The Burgers equation with a noisy force, Comm. Partial Differential Equations 19 (1994), 119–141.
H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, T.-S. Zhang, The stochastic Wick-type Burgers equation, in Stochastic Partial Differential Equations (A. Etheridge, ed.), London Mathematical Society Lecture Note Series, Vol. 216, Cambridge University Press, Cambridge, 1995, pp. 141–161.
H. Holden, N. H. Risebro, Stochastic properties of the scalar Buckley-Leverett equation. SIAM J. Math. Anal. 51 (1991), 1472–1488.
H. Holden, N. H. Risebro, A stochastic approach to conservation laws, Proc. Third International Conference on Hyperbolic Problems. Theory. Numerical Methods and Applications, Uppsala, 1990 (B. Engquist, B. Gustafsson, eds.), Studentlitteratur/Chartwell-Bratt, Lund-Bromley, 1991, pp. 575–587.
H. Holden, N. H. Risebro, A fractional steps method for scalar conservation laws without the CFL condition, Math. Comp. 60 (1993), 221–232.
M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing surfaces, Phys. Rev. Lett. 56 (1986), 889–892.
S. Kida, Asymptotic properties of Burgers turbulence, J. Fluid. Mech. 93 (1979), 337–377.
P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.
H. Konno, On stochastic Burgers equation, J. Phys. Soc. Japan 54 (1985), 4475–4478.
H. Kunita, First-order stochastic partial differential equations, in Stochastic Analysis, Taniguchi Symposium, Katata and Kyoto, 1982 (K. Ito, ed.), North-Holland, Amsterdam, 1984 pp. 249–269.
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin, 1984.
R. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1991.
B. J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), 59–69.
E. Medina, T. Hwa, M. Kardar, T.-C. Zhang, Burgers equation with correlated noise: Renormalizationgroup analysis and applications to directed polymers and interface growth, Phys. Rev. 39A (1989), 3053–3075.
T. Musha, Y. Kosugi, G. Matsumoto, M. Suzuki, Modulation of the time relation of action potential impulses propagating along the axon, IEEE Trans. Biomed. Engrg. 28 (1981), 616–623.
H. Nakazawa, Stochastic Burgers’ equation in the inviscid limit, Adv. in Appl. Math. 3 (1982), 18–42.
S. F. Shandarin, Ya. B. Zeldovich, The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium, Rev. Mod. Phys. 61 (1989), 185–220.
Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of Brownian motion, Comm. Math. Phys. 148 (1992), 623–641.
Ya. G. Sinai, Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Stat. Phys. 64 (1991), 1–12.
Ya. G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Comm. Math. Phys. 148 (1992), 601–621.
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
Author information
Authors and Affiliations
Additional information
This research has been supported by VISTA (a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap, Statoil) and NAVF (the Norwegian Research Council for Science and the Humanities).
Rights and permissions
About this article
Cite this article
Holden, H., Risebro, N.H. Conservation laws with a random source. Appl Math Optim 36, 229–241 (1997). https://doi.org/10.1007/BF02683344
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02683344