International Applied Mechanics

, Volume 36, Issue 2, pp 135–172 | Cite as

Development of analytical methods in three-dimensional problems of the statics of anisotropic bodies (Review)

  • Yu. N. Nemish
Article

Abstract

The main results of scientific research carried out at the S. P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine in the field of three-dimensional problems of the statics of anisotropic bodies are stated in a systematic form. The results include the structural method of constructing the exact analytical solutions of equations of the elastic and thermoelastic equilibrium of rectilinearly orthotropic bodies and approximate analytical methods of solving three-dimensional boundary-value problems for curvilinearly orthotropic bodies of canonical and noncanonical form. Results of solution of specific boundary-value problems for orthotropic and transversally isotropic bodies are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ya. Aleksandrov, “Representation of the components of the three-dimensional axisymmetric state of a transversally isotropic body using functions of complex variable and contour integrals,”Izv. Akad. Nauk SSSR Mekh. Mashinostr., No. 2, 149–152 (1969).Google Scholar
  2. 2.
    A. Ya. Aleksandrov and V. S. Vol'pert, “Solution of three-dimensional problems of the theory of elasticity for a transversally isotropic body using analytical functions,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 5, 82–91 (1967).Google Scholar
  3. 3.
    A. Ya. Aleksandrov and Yu. I. Solov'ev,Three-Dimensional Problems of the Theory of Elasticity [in Russian], Nauka, Moscow (1978).Google Scholar
  4. 4.
    K. S. Aleksandrov and T. V. Ryzhova, “The elastic properties of crystals (review),”Kristallografiya,6, No. 2, 289–314 (1961).Google Scholar
  5. 5.
    E. V. Altukhov, A. S. Kosmodamianskii, and V. A. Shaldyrvan, “The bending of a thick ring plate,”Izv. Akad. Nauk Arm. SSR Mekh.,28, No. 6, 66–72 (1975).Google Scholar
  6. 6.
    S. A. Ambartsumyan,Theory of Anisotropic Plates [in Russian], Nauka, Moscow (1967).Google Scholar
  7. 7.
    S. A. Ambartsumyan,General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).Google Scholar
  8. 8.
    E. K. Ashkenazi,Anisotropy of Machine-Building Materials [in Russian], Mashinostroyeniye, Leningrad (1969).Google Scholar
  9. 9.
    E. K. Ashkenazi and É. V. Ganov,Anisotropy of Structural Materials: A Reference Book [in Russian], Lesn. Prom., Leningrad (1980).Google Scholar
  10. 10.
    E. K. Ashkenazi and A. S. Morozov, “A technique for experimental investigation of the elastic properties of composite materials,”Zavod. Labor., No. 6, 731–735 (1976).Google Scholar
  11. 11.
    I. Yu. Babich and B. Yu. Nemish, “The axisymmetric stress state of orthotropic cylinders under nonuniform pressure,”Abstracts of Papers Read at the Voronezh Sch. Modern Problems of Mechanics and Applied Mathematics [in Russian], Voronezh (1998), p. 29.Google Scholar
  12. 12.
    I. Yu. Babich and B. Yu. Nemish, “The three-dimensional thermostress state of transversally isotropic composite plates under nonuniform heat,”Abstracts of Papers Read at Intern. Conf. Dynamical Syst. Model. Stab. Invest. [in Russian], Kiev (1999), p. 7.Google Scholar
  13. 13.
    É. N. Bayda, “The general solution of equilibrium equations for anisotropic and isotropic bodies,”Izv. Vuzov Str. Arkh., No. 6, 17–27 (1958).Google Scholar
  14. 14.
    É. N. Bayda, “The method of three functions for an anisotropic body,” in:Sb. Nauchn. Tr. Leningrad. Inzh.-Str. Inst., Issue 29 (1958), pp. 17–45.Google Scholar
  15. 15.
    É. N. Bayda, “Pleonisms in the general solution of the equilibrium equations in displacements for an anisotropic body,”Izv. Vuzov Str. Arkh., No. 1, 27–37 (1959).Google Scholar
  16. 16.
    S. A. Batugin and R. K. Nirenburg, “Approximate dependence between the elastic constants of rock. Parameters of anisotropy,”Fiz.-Tekh. Probl. Razr. Polezn. Iskop.,7, No. 1, 7–11 (1972).Google Scholar
  17. 17.
    Kh. B. Berkinov, “Functions of the stress tensor of an anisotropic elastic body,” in:Integration of Some Differential Equations of Mathematical Physics [in Russian], Nauka, Tashkent (1964), pp. 83–103.Google Scholar
  18. 18.
    Kh. B. Berkinov and N. M. Sayfullaev, “The tensor of stress functions for an anisotropic elastic body,”Dokl. Akad. Nauk Tadzh. SSR,10, No. 11, 13–15 (1967).Google Scholar
  19. 19.
    N. M. Bloshko, “The stress state of a transversally isotropic corrugated cylinder of finite dimensions,”Prikl. Mekh.,19, No. 2, 38–43 (1983).Google Scholar
  20. 20.
    N. M. Bloshko and Yu. N. Nemish, “Elastic equilibrium of transversally isotropic cylinders with perturbed lateral surfaces,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 4, 93–99 (1984).Google Scholar
  21. 21.
    N. M. Bloshko and Yu. N. Nemish, “The axisymmetric stress state of finite elastic cylinders with grooves of arbitrary shapes,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 6, 53–61 (1988).Google Scholar
  22. 22.
    Yu. V. Vasilevich and I. A. Prusov, “One method of solution of the first basic problem for an orthotropic half-space,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 2, 66–72 (1989).Google Scholar
  23. 23.
    Yu. V. Vasilevich and I. A. Prusov, “Stresses and displacements for an elastic orthotropic half-space under a normal load,”Teor. Prikl. Mekh., No. 3, 56–59 (1989).Google Scholar
  24. 24.
    B. F. Vlasov, “One case of bending of a rectangular thick plate,”Vestnik Moscovskogo Univ. Mat. Mekh., No. 2, 25–34 (1957).MathSciNetGoogle Scholar
  25. 25.
    V. S. Vol'pert, “Solution of the basic problems of the theory of elasticity for a transversally isotropic paraboloid and two-sheet hyperboloid of revolution,” in:Tr. Novosibirskogo Inst. Zhel.-Dor. Transp., Issue 96 (1970), pp. 158–165.Google Scholar
  26. 26.
    Sh. Kh. Ganev, “The complete solution of the three-dimensional problem of orthotropic continuous media in rectangular coordinates,” in:Proc. Inter. Conf. on Continuum Mechanic, Izd. Bolg. Akad. Nauk, Sofia (1968), pp. 123–134.Google Scholar
  27. 27.
    V. T. Golovchan,Anisotropy of the Physical-Mechanical Properties of Composite Materials [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  28. 28.
    Ya. M. Grigorenko and A. T. Vasilenko,Problems of the Statics of Anisotropic Inhomogeneous Shells [in Russian], Nauka, Moscow (1992).Google Scholar
  29. 29.
    Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova,The Statics of Anisotropic Thick-Walled Shells [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  30. 30.
    V. T. Grinchenko,The Equilibrium and Steady-State Vibrations of Elastic Finite Bodies [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  31. 31.
    A. N. Guz', “Representation of the solutions of three-dimensional axisymmetric problems of the theory of elasticity for a transversally isotropic body,”Dop. Akad. Nauk Ukr. SSR, No. 12, 1592–1595 (1963).MathSciNetGoogle Scholar
  32. 32.
    A. N. Guz' and Yu. N. Nemish,Perturbation Methods in Three-Dimensional Problems of the Theory of Elasticity [in Russian], Vyshcha Shkola, Kiev (1982).Google Scholar
  33. 33.
    A. N. Guz' and Yu. N. Nemish,The Statics of Elastic Noncanonical Bodies, Vol. 2 of the six-volumeThree-Dimensional Problems of the Theory of Elasticity and Plasticity [in Russian], (A. N. Guz', general editor), Naukova Dumka, Kiev (1984).Google Scholar
  34. 34.
    V. M. Deev, “Solution of the three-dimensional problem of theory of elasticity for an anisotropic medium,”Dop. Akad. Nauk Ukr. SSR, No. 7, 707–711 (1958).MathSciNetGoogle Scholar
  35. 35.
    V. M. Deev and N. S. Smirnov, “The general solution in the statics of an elastic medium in the case of curvilinear anisotropy,” in:Proc. 8th Sci.-Tech. Conf., Izd. Kharkov. Univ., Kharkov (1968), pp. 167–171.Google Scholar
  36. 36.
    A. A. Dorodnitsyn, “The use of the small-parameter method in the numerical solution of equations of mathematical physics,” in:Tr. Vychisl. Tsent. Akad. Nauk SSSR Numerical Solution of Problems of Continuum Mechanics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1969), pp. 85–100.Google Scholar
  37. 37.
    M. Yu. Kashtalyan and Yu. N. Nemish, “Solution of three-dimensional boundary-value problems of the statics for orthotropic plates,”Dokl. Akad. Nauk Ukr. SSR, No. 10, 66–70 (1992).Google Scholar
  38. 38.
    M. Yu. Kashtalyan and Yu. N. Nemish, “The stress-strain state of transversally isotropic constant- and variable-thickness plates bent by localized loads,”Prikl. Mekh.,29, No. 3, 24–31 (1993) (Int. Appl. Mech.,29, No. 3, 189–194 (1993)).Google Scholar
  39. 39.
    M. Yu. Kashtalyan and Yu. N. Nemish, “The three-dimensional stress-strain state of bent rectangular orthotropic plates of variable thickness,”Prikl. Mekh.,30, No. 12, 39–48 (1994) (Int. Appl. Mech.,30, No. 12, 952–961 (1994)).Google Scholar
  40. 40.
    I. V. Kim, “On some problems of the theory of elasticity for an orthogonally isotropic half-space,” in:Sb. Tr. Tashkentskogo Inst. Inzh. Zhel.-Dor. Transp., Issue 56 (1968), pp. 51–62.Google Scholar
  41. 41.
    I. V. Kim, “The static problem for a orthogonally anisotropic elastic cylinder,”Dokl. Akad. Nauk Uz. SSR, No. 10, 3–5 (1968).Google Scholar
  42. 42.
    I. V. Kim, “Elastic equilibrium of infinite orthotropic space weakened by two elliptic slits,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 2, 74–80 (1972).Google Scholar
  43. 43.
    S. Clark,Handbook of Physical Constants [Russian translation], Nauka, Moscow (1969).Google Scholar
  44. 44.
    A. N. Guz', A. S. Kosmodamianskii, and V. P. Shevchenko (eds.),Stress Concentration, Vol. 7 of the 12-volumeMechanics of Composites [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1998).Google Scholar
  45. 45.
    A. S. Kosmodamianskii,The Stress State of Anisotropic Media with Openings or Cavities [in Russian], Vyshcha Shkola, Kiev-Donetsk (1976).Google Scholar
  46. 46.
    A. S. Kosmodamianskii and V. A. Galich, “The general solution of the three-dimensional problem of the theory of elasticity for a laminated orthotropic cylindrical shells,”Dokl. Akad. Nauk SSSR, Ser. A, No. 8, 46–48 (1984).Google Scholar
  47. 47.
    A. S. Kosmodamianskii and V. A. Shaldyrvan, “Determination of the stress state of multiply connected transtropic plates,”Prikl. Mat. Mekh.,39, No. 5, 909–917 (1975).Google Scholar
  48. 48.
    A. S. Kosmodamianskii and V. A. Shaldyrvan,Thick Multiply Connected Plates [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  49. 49.
    B. M. Koyalovich, “Analysis of infinite systems of linear algebraic equations,”Izv. Phys.-Mat. Inst. im. V. A. Steklova, No. 3, 41–167 (1930).Google Scholar
  50. 50.
    V. D. Kupradze, T. G. Gegelia, M. O. Basheleyshvili, and T. V. Burchuladze,Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity [in Russian], Nauka, Moscow (1976).Google Scholar
  51. 51.
    S. G. Lekhnitskii,Anisotropic Plates [in Russian], Gostekhizdat, Moscow (1957).Google Scholar
  52. 52.
    S. G. Lekhnitskii,The Theory of Elasticity of an Anisotropic Body [in Russian], Nauka, Moscow (1977).Google Scholar
  53. 53.
    D. F. Lyalyuk, Yu. N. Nemish, and D. I. Chernopiskii, “Elastic equilibrium of thick-walled transversally isotropic nearly spherical shells,” in:Proc. 12th All-Union Conf. on the Theory of Shells and Plates, Vol. 3, Metsniereba, Yerevan (1980). pp. 38–44.Google Scholar
  54. 54.
    P. Marinov, “Stiffness of a prismatic solid with natural orthotropy under conditions of three-dimensional stress state,”Izv. Inst. Mekh., No. 4, 133–152 (1967).Google Scholar
  55. 55.
    P. Marinov, “Stiffness of a simply supported prismatic solid with natural orthotropy,”Izv. Inst. Tekh. Mekh., No. 4, 153–167 (1967).Google Scholar
  56. 56.
    Yu. I. Matyash, “The axisymmetric elastic equilibrium of a three-layer crossly corrugated transversally isotropic cylinder,”Prikl. Mekh.,19, No. 6, 39–46 (1983).Google Scholar
  57. 57.
    A. N. Guz' and S. D. Akbarov,Mechanics of Materials with Curved Structures, Vol. 4 of the 12-volumeMechanics of Composites [in Russian] (A. N. Guz', general editor), Naukova Dumka, Kiev (1995).Google Scholar
  58. 58.
    Z. Mossakowska, “Stress functions for elastic bodies possessing triaxial orthotropy,”Bull. Acad. Polon. Sci, Otd. 4,3, No. 1, 3–6 (1955).Google Scholar
  59. 59.
    Z. Mossakowska, “Stress functions for elastic bodies possessing triaxial orthotropy,”Arch. Mech. Stos.,7, No. 1, 87–96 (1955).MathSciNetGoogle Scholar
  60. 60.
    B. Yu. Nemish, “The stress state of orthotropic thick-walled cylinders under nonuniform pressure,”Prikl. Mekh.,34, No. 4, 61–68 (1998) (Int. Appl. Mech.,34, No. 4., 352–359 (1998)).MATHMathSciNetGoogle Scholar
  61. 61.
    B. Yu. Nemish, “One approach to the solution of axisymmetric problems for spherically orthotropic bodies,” in:Theoretical and Applied Mechanics [in Russian], Issue 29 (1999), pp. 17–24.Google Scholar
  62. 62.
    B. Yu. Nemish, “Three-dimensional thermoelasticity problems for nonuniformly heated laminar transversally isotropic plates,”Prikl. Mekh.,35, No. 7, 95–103 (1999) (Int. Appl. Mech.,35, No. 7, 732–740 (1999)).MATHGoogle Scholar
  63. 63.
    B. Yu. Nemish, “An analytical method of solving one class of three-dimensional problems of thermoelasticity for laminated transversally isotropic plates with variable thickness,” in:Theoretical and Applied Mechanics [in Russian], Issue 30 (1999), pp. 26–36.Google Scholar
  64. 64.
    B. Yu. Nemish, “Influence of anisotropy and boundary conditions on the thermoelastic equilibrium of nonuniformly heated laminated plates,”Prikl. Mekh.,35, No. 11, 96–105 (1999) (Int. Appl. Mech.,35, No. 11, 1173–1184 (1999)).MATHGoogle Scholar
  65. 65.
    Yu. N. Nemish, “An approximate solution of three-dimensional problems of the theory of elasticity for a transversally isotropic medium,”Prikl. Mekh.,5, No. 8, 26–34 (1969).Google Scholar
  66. 66.
    Yu. N. Nemish, “The axisymmetric problem on the stress state of orthotropic elastic bodies,”Prikl. Meck.,7, No. 6, 17–24 (1971).MathSciNetGoogle Scholar
  67. 67.
    Yu. N. Nemish, “The method of small parameters in three-dimensional axisymmetric problems for cylindrically orthotropic bodies,”Dop. Akad. Nauk Ukr. RSR, Ser. A, No. 3, 247–249 (1972).Google Scholar
  68. 68.
    Yu. N. Nemish, “An approximate method of analysis of the symmetric strain of orthotropic bodies,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 5, 81–87 (1972).Google Scholar
  69. 69.
    Yu. N. Nemish, “An approximate method of solution of boundary-value problems of the mathematical theory of elasticity for an anisotropic medium,”Mat. Fiz., No. 11, 98–104 (1972).Google Scholar
  70. 70.
    Yu. N. Nemish, “An approximate method of solution of three-dimensional problems of the theory of elasticity of a curvilinearly orthotropic body for noncanonical domains,”Prikl. Mekh.,14, No. 7, 10–17 (1978).Google Scholar
  71. 71.
    Yu. N. Nemish,Elements of the Mechanics of Piecewise Homogeneous Bodies with Noncanonical Interfaces [in Russian], Naukova Dumka, Kiev (1989).MATHGoogle Scholar
  72. 72.
    Yu. N. Nemish, “One class of the exact analytical solutions of the three-dimensional thermoelastic-equilibrium equations for orthotropic plates,”Prikl. Mekh.,36, No. 1, 78–87 (2000) (Int. Appl. Mech.,36, No. 1, 78–87 (2000)).MATHMathSciNetGoogle Scholar
  73. 73.
    Yu. N. Nemish and N. M. Bloshko,The Stress State of Elastic Cylinders with Grooves [in Russian], Nauka Dumka, Kiev (1987).Google Scholar
  74. 74.
    Yu. N. Nemish and M. Yu. Kashtalyan, “The stress-strain state of bent rectangular transversally isotropic plates of variable thickness,”Prikl. Mekh.,28, No. 6, 14–22 (1992) (Int. Appl. Mech.,28, No. 6, 352–359 (1992)).MATHGoogle Scholar
  75. 75.
    Yu. N. Nemish and M. Yu. Kashtalyan, “The stress-strain state of bent transversally isotropic plates with constant and variable thickness,”Prikl. Mekh.,29, No. 3, 24–31 (1993) (Int. Appl. Mech.,29, No. 3, 189–194 (1993)).Google Scholar
  76. 76.
    Yu. N. Nemish, D. F. Lyalyuk, and D. I. Chernopiskii, “The thermoelastic equilibrium of thick-walled transversally isotropic nearly spherical shells,”Abstracts of Papers Read at 15th Sci. Conf. Thermal Strecey of Structural Elements, Kiev (1980).Google Scholar
  77. 77.
    Yu. N. Nemish and V. N. Nemish, “Torsion of orthotropic solids of revolution with noncanonical cavities and inclusions,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 6, 101–111 (1976).Google Scholar
  78. 78.
    Yu. N. Nemish and V. N. Nemish, “Solution of three-dimensional problems of the theory of clasticity of a transversally isotropic medium for noncanonical domains,”Prikl. Mekh.,12, No. 12, 73–82 (1976).Google Scholar
  79. 79.
    Yu. N. Nemish and V. N. Nemish, “The stress state of a transversally isotropic medium weakened by a closed conical cavity,”Mat. Fiz., No. 26, 110–114 (1979).MATHGoogle Scholar
  80. 80.
    Yu. N. Nemish and V. N. Nemish, “The stress concentration near closed noncanoical cavities in transversally isotropic media,”Abstracts of Papers Read at Rep. Symp. on Stress Concentration, Donetsk (1983), pp. 80–81.Google Scholar
  81. 81.
    Yu. N. Nemish and I. Yu. Khoma, “Determination of the stress-strain state of nonthin transversally isotropic spherical shells with curvilinear openings,”Prikl. Mekh.,34, No. 6, 54–63 (1998) (Int. Appl. Mech.,34, No. 6, 552–560 (1998)).MATHGoogle Scholar
  82. 82.
    Yu. N. Nemish and I. Yu. Khoma,Nonthin Transversally Isotropic Shells, Vol. 7, Chapter 10 of the 12-volumeMechanics of Composites [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1998), pp. 252–287.Google Scholar
  83. 83.
    Yu. N. Nemish, I. Yu. Khoma, and D. I. Chernopiskii, “Determination of the stress-strain state of nonthin transversally isotropic spherical shells with elastically stiffened curvilinear holes,”Prikl. Mekh.,35, No. 8, 18–28 (1999) (Int. Appl. Mech.,35, No. 8, 767–777 (1999)).MATHGoogle Scholar
  84. 84.
    Yu. N. Nemish and D. I. Chernopiskii, “The axisymmetric stress state of deformable cylinders with variable thickness,”Prikl. Mekh.,11, No. 10, 9–18 (1975).Google Scholar
  85. 85.
    Yu. N. Nemish and D. I. Chernopiskii, “An asymptotic method of analysis of thick-walled shells bounded by noncoordinate surfaces,” in:Proc. 10th All-Union Conf. on the Theory of Shells and Plates, Vol. 1, Tbilisi (1975), pp. 235–243.Google Scholar
  86. 86.
    Yu. N. Nemish and D. I. Chernopiskii, “Some axisymmetric boundary-value problems of the statics of crossly corrugated laminated cylinders,”Prikl. Mekh.,13, No. 6, 38–46 (1977).Google Scholar
  87. 87.
    Yu. N. Nemish and D. I. Chernopiskii, “Some three-dimensional boundary-value problems for longitudinally corrugated thick-walled cylinders,”Prikl. Mekh.,14, No. 3, 34–44 (1978).Google Scholar
  88. 88.
    Yu. N. Nemish and D. I. Chernopiskii,Elastic Equilibrium of Corrugated Bodies [in Russian], Naukova Dumka, Kiev (1983).MATHGoogle Scholar
  89. 89.
    V. L. Novatskii, “The stress function in three-dimensional problems of an elastic body with transversal isotropy,”Bull. Acad. Polon. Sci Otd. 4,4, No. 1, 21–25 (1954).Google Scholar
  90. 90.
    Yu. Novinskii, V. Ol'shak, and V. Urbanskii, “The thermoelastic problem for media possessing curvilinear orthotropy,”Bull. Acad. Polon. Sci Otd. 4,4, No. 2, 105–112 (1956).Google Scholar
  91. 91.
    V. V. Novozhilov,The Theory of Elasticity [in Russian], Sudpromgiz, Leningrad (1958).Google Scholar
  92. 92.
    V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Bending of a thick transversally isotropic plate by a transversal load,”Prikl. Mekh.,23, No. 11, 21–26 (1987).Google Scholar
  93. 93.
    V. G. Piskunov, V. S. Sipetov, and Sh. Sh. Tuimetov, “Solution of problems of the statics for laminated orthotropic plates in spatial formulation,”Prikl. Mekh.,26, No. 2, 41–49 (1990).Google Scholar
  94. 94.
    Yu. N. Podil'chuk,Three-Dimensional Problems of the Theory of Elasticity [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  95. 95.
    Yu. N. Podil'chuk,Boundary Problems of the Statics of Elastic Bodies, Vol. 1 of the six-volumeSpatial Problems of the Theory of Elasticity and Plasticity [in Russian], (A. N. Guz', general editor), Naukova Dumka, Kiev (1984).Google Scholar
  96. 96.
    Yu. N. Podil'chuk, “The exact analytical solutions of three-dimensional boundary-value problems of the statics of a transversally isotropic canonical body (review),”Prikl. Mekh.,33, No. 10, 3–30 (1997) (Int. Appl. Mech.,33, No. 10, 763–787 (1997)).MathSciNetGoogle Scholar
  97. 97.
    Yu. N. Podil'chuk, “Representation of the general solution of equations for a transversally isotropic piezoceramic body in terms of harmonic functions,”Prikl. Mekh.,34, No. 7, 20–26 (1998) (Int. Appl. Mech.,34, No. 7, 623–628 (1998)).MATHGoogle Scholar
  98. 98.
    Yu. N. Podil'chuk and A. H. Passoss Morgado, “Representation of the general solution of the equations of static thermoelectroelasticity of a transversally isotropic piezoceramic body in terms of potential functions,” in:Theoretical and Applied Mechanics [in Russian], Issue 29 (1999), pp. 42–51.Google Scholar
  99. 99.
    A. P. Prusakov, “Functions of displacements in problems of the theory of elasticity,”Prikl. Mekh.,35, No. 5, 64–68 (1999) (Int. Appl. Mech.,35, No. 5, 488–492 (1999)).MATHGoogle Scholar
  100. 100.
    I. A. Prusov and Yu. V. Vasilevich, “A new representation of the general formulas of the theory of elasticity for an orthotropic body subject to a normal load,”Vesn. Belorus Univ., Ser. 1, No. 2, 42–46 (1991).MathSciNetGoogle Scholar
  101. 101.
    A. L. Rabinovich, “Elastic constants and strength of air materials,”Tr. TsAGI, No. 582, 1–56 (1946).Google Scholar
  102. 102.
    A. L. Rabinovich,An Introduction to the Mechanics of Reinforced Polymers [in Russian], Nauka, Moscow (1970).Google Scholar
  103. 103.
    G. N. Savin and Yu. N. Nemish, “The method of perturbation of elastic properties in the mechanics of rigid deformable bodies,”Dokl. Akad. Nauk SSSR,216, No. 1, 53–55 (1974).Google Scholar
  104. 104.
    V. S. Sarkisyan,Some Problems of the Theory of Elasticity of an Anisotropic Body [in Russian], Izd. Yerevanskogo Univ., Yerevan (1976).Google Scholar
  105. 105.
    V. M. Sobolevskii, “The elastic stress state of an anisotropic spherical shell under internal and external pressures and a radial thermal flow,”Dokl. Akad. Nauk Belorus. SSR,2, No. 4, 147–155 (1958).MathSciNetGoogle Scholar
  106. 106.
    Yu. I. Solov'ev, “Solution of the axisymmetric problem of the theory of elasticity for transversally isotropic bodies using generalized analytical functions,”Prikl. Mat. Mekh.,38, No. 2, 379–384 (1974).ADSGoogle Scholar
  107. 107.
    V. T. Golovchan (ed.),Statics of Materials, Vol. 1 of the 12-volumeMechanics of Composites [in Russian] (A. N. Guz', general editor), Naukova Dumka, Kiev (1993).Google Scholar
  108. 108.
    Ya. M. Grigorenko (ed.),Statics of Structural Elements, Vol. 8 of the 12-volumeMechanics of Composites [in Russian] (A. N. Guz', general editor), A.S.K., Kiev (1999).Google Scholar
  109. 109.
    L. P. Khoroshun (ed.),Statistical Mechanics and Effective Properties of Materials, Vol. 3 of the 12-volumeMechanics of Composites (A. N. Guz', general editor) [in Russian], Naukova Dumka, Kiev (1993).Google Scholar
  110. 110.
    G. Hantington, “Elastic constants of crystals,”Usp. Fiz. Mat. Nauk,74, No. 3, 462–520 (1961).Google Scholar
  111. 111.
    G. M. Khatiashvili,The Almansi-Mitchel Problems for Homogeneous and Compound Bodies [in Russian], Part 1, Metsniereba, Tbilisi (1983).Google Scholar
  112. 112.
    A. G. Khatkevich, “Elastic constants of crystals,”Kristallografiya,6, No. 5, 700–703 (1961).Google Scholar
  113. 113.
    I. Yu. Khoma,The Generalized Theory of Anisotropic Shells [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  114. 114.
    W. T. Chen, “On some problems in transversally isotropic elastic materials,”Trans. ASME, Ser. E. Prikl. Mekh.,33, No. 2, 98–107 (1966).Google Scholar
  115. 115.
    W. T. Chen, “On some problems in elastic materials with spherical isotropy,”Trans. ASME, Ser. E. Prikl. Mekh,33, No. 3, 71–79 (1966).Google Scholar
  116. 116.
    N. G. Chentsov, “Examination of veneer as an anisotropic plate,”Tekhn. Zamet. TsAGI, No. 91, 1–27 (1936).Google Scholar
  117. 117.
    V. A. Shaldyrvan, A. A. Sumtsov, and V. A. Soroka, “Study of stress concentration in short hollow cylinders made of transversally isotropic materials,”Prikl. Mekh.,35, No. 7, 43–48 (1999) (Int. Appl. Mech.,35, No. 7, 678–683 (1999)).MATHGoogle Scholar
  118. 118.
    F. Auerbach, “Elastizität der Kristalle,” in:Handbuch der physikalishe und techniche Mechanik, B.3, Leipzig (1927), pp. 239–282.Google Scholar
  119. 119.
    C. J. Bozs,Teoria Elastlcitatii Corpurilor Anisotrope, Ed. Acad R.S. Romania, Bucuresti (1970).Google Scholar
  120. 120.
    A. L. Cauchy, “Surles equations differentielles d'equilibre ou de mouvement pour un system de points materials,”Ex.de Math., No. 4 (1829).Google Scholar
  121. 121.
    W. T. Chen, “An elastic orthotropic ellipsoid in a centrifugal force field,”Trans. ASME, Ser. E,36, No. 2, 313–316 (1969).Google Scholar
  122. 122.
    W. T. Chen, “Stresses in some anisotropic materials due to indentation and sliding,”Int. J. Sol. Struct.,5, No. 3, 191–214 (1969).MATHCrossRefADSGoogle Scholar
  123. 123.
    A. H. Elliott, “Three-dimensional stress distributions in hexagonal aelotropic crystals,”Proc. Cambr. Phil. Soc.,44, pt. 4, 522–533 (1948).CrossRefGoogle Scholar
  124. 124.
    R. A. Eubanks and E. Sternberg, “On the axisymmetric problem of elasticity theory for a medium with transverse isotropy,”J. Rational Mech. Analys.,3, No. 1, 89–101 (1954).MathSciNetGoogle Scholar
  125. 125.
    A. E. Green and W. Zerna,Theoretical Elasticity, Univ. Press, Oxford (1954).MATHGoogle Scholar
  126. 126.
    H. Grüters, “Iterative Lösung von Lastspannungsproblemen in anisotropen Korpern,”Z. Angew. Math. Mech.,54, No. 4, 79–80 (1974).Google Scholar
  127. 127.
    Hata Kin-ichi, “Some remarks on the three-dimensional problems concerned with the isotropic and anisotropic elastic solids,”Mem. Fac. Engng. Hokkaido Univ.,10, No. 2, 129–177 (1956).Google Scholar
  128. 128.
    Hata Kin-ichi, “On the method for solving three-dimensional elasticity problems in orthotropic solids,” in:Proc. 6th Japan. Nat. Congr. Appl. Mech., Tokyo (1957) pp. 43–46.Google Scholar
  129. 129.
    M. Hayes, “On the displacement boundary-value problem in linear elastostatics,”Quart. J. Mech. Appl. Math.,19, No. 2, 151–155 (1966).MATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    R. F. S. Hearmon,An Introduction to Applied Anisotropic Elasticity, S. 1, Oxford Univ. Press, London (1961).Google Scholar
  131. 131.
    L. R. Hermann, “Stress functions for axisymmetric, orthotropic, elasticity equations,”AIAAT, No. 2, 1822–1824 (1964).Google Scholar
  132. 132.
    Hu Hai-Chang, “On the three-dimensional problems of the theory of elasticity of a transversely isotropic body,”Acta. Sci. Sinica.,2, No. 2, 145–151 (1953).MathSciNetGoogle Scholar
  133. 133.
    Hu Hai-Chang, “On the equilibrium and vibration of a transversely isotropic elastic body,” Sci. Sinica.,5, No. 1, 1–18 (1956).Google Scholar
  134. 134.
    S. Kaliski, “On a conception of basis solutions for orthotropic elastic and inelastic bodies,”Arch. Mech. Stos., No. 11, 45–60 (1959).MathSciNetGoogle Scholar
  135. 135.
    A. S. Lodge, “The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids,”Quart. J. Mech. Appl. Math.,8, No. 2, 211–225 (1955).MathSciNetCrossRefGoogle Scholar
  136. 136.
    Z. Mossakowska, “Stress functions of elastic bodies with three-dimensional orthotropy,”Bull. Acad. Polon. Sci., No. 1, 3–6 (1955).Google Scholar
  137. 137.
    B. Saint-Venant, “Metoire sur les divers genres d'homogenete des corps solids,”Journ. de math. pures et appl.,10, 297–349 (1865).Google Scholar
  138. 138.
    I. Todhunter and K. Person,A History of the Theory of Elasticity and of the Strength of Materials, Cambridge (1893).Google Scholar
  139. 139.
    W. Voigt,Lerbuch der Kristallphysik (Teubner), Leibzig-Berlin (1928).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • Yu. N. Nemish

There are no affiliations available

Personalised recommendations