Skip to main content
Log in

The stability of cylindrical and conic shells made of composite materials with an elastoplastic matrix

  • Published:
International Applied Mechanics Aims and scope

Abstract

Studies in which problems on the stability of shells made of inelastically deformed composite materials are formulated and solved are generalized. Primary attention is focused on works that employ a structural approach to the description of the deformation of a fibrous composite consisting of elastoplastic components. The load for which the solution of the problem becomes ambiguous (bifurcation) is considered critical. Boroaluminum cylindrical and conic shells subject to external pressure, axial compression, and combined loading by surface and axial forces of different signs are analyzed for stability. The effect of boundary conditions and reinforcement on the critical loads is considered. The effect of temperature on shell stability beyond the elastic limits is investigated by an example of a cylindrical shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Alfutov, I. A. Dymkov, and Yu. G. Cherepanov, “The stability of metal-composite shells under temperature-force actions,”Izv. RAN, Mekh. Tverd. Tela, No. 1, 131–141 (1994).

    Google Scholar 

  2. N. A. Alfutov, P. A. Zinov'ev, and B. G. Popov,Design of Multilayer Composite Plates and Shells [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  3. I. Ya. Amiro and N. Ya. Prokopenko, “The influence of the arrangement of layers and their mechanical characteristics on the stability of a two-layer cylindrical shells,”Prikl. Mekh.,6, No. 3, 9–15 (1970).

    Google Scholar 

  4. D. V. Babich, “The rational reinforcement of compression shells,”Mekh. Komp. Mater., No. 1, 157–160 (1991).

    Google Scholar 

  5. I. Yu. Babich, “Analysis of three-dimensional and applied formulations in the theory of stability of rods made of composite materials,”Prikl. Mekh.,25, No. 2, 7–12 (1989).

    Google Scholar 

  6. I. Yu. Babich and A. N. Guz', “The stability of rods, plates, and shells made of composite materials (a three-dimensional formulation): A review,”Prikl. Mekh.,19, No. 10, 3–19 (1983).

    MathSciNet  Google Scholar 

  7. I. Yu. Babich, A. N. Guz', and L. V. Deriglazov, “The stability of three-layer anisotropic cylindrical shells,”Prikl. Mekh.,19, No. 9, 13–20 (1983).

    Google Scholar 

  8. I. Yu. Babich, A. N. Guz', I. I. Chernushenko, and N. A. Shul'ga, “Estimating the accuracy of theories of the stability of cylindrical shells under external pressure,”Prikl. Mekh.,10, No. 10, 16–21 (1974).

    Google Scholar 

  9. I. Yu. Babich, A. N. Guz', and N. A. Shul'ga, “Studying the dynamics and stability of composite materials in a three-dimensional formulation (review),”Prikl. Mekh.,18, No. 1, 3–27 (1982).

    Google Scholar 

  10. I. Yu. Babich and L. V. Deriglazov, “The stability of three-layer anisotropic cylindrical shells,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 26–29 (1982).

    Google Scholar 

  11. I. Yu. Babich and V. I. Kilin, “The stability of a three-layer orthotropic cylindrical shell under axial compression,”Prikl. Mekh.,21, No. 6, 44–49 (1985).

    Google Scholar 

  12. I. Yu. Babich and V. I. Kilin, “Studying the effect of a nonsymmetric arrangement of layers on the stability of three-layer cylindrical shells under axial compression,”Teor. Prikl. Mekh., No. 19, 103–106 (1988).

    Google Scholar 

  13. I. Yu. Babich and M. A. Cherevko, “The stability of cylindrical shells with an elastoplastic filler under axial compression,”Prikl. Mekh.,20, No. 3, 60–64 (1984).

    Google Scholar 

  14. I. Yu. Babich, I. I. Chernushenko, and N. A. Shul'ga, “Comparative analysis of applied theories of the stability of plates and cylindrical shells made of composite materials,”Soprot. Mater. Teor. Sooruzh., No. 25, 22–26 (1975).

    Google Scholar 

  15. I. V. Banichuk, V. V. Kobelev, and R. B. Rikards,Optimization of Structural Elements Made of Composite Materials [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  16. A. N. Bozhinskii and A. S. Vol'mir, “Experimental investigations of cylindrical shells beyond the elastic limit,”Dokl. Akad. Nauk SSSR,142, No. 2, 299–301 (1962).

    Google Scholar 

  17. V. V. Bolotin and Yu. N. Novichkov,The Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  18. G. A. Vanin,The Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  19. G. A. Vanin and N. P. Semenyuk, “The stability of reinforced laminated cylindrical shells with allowance for local destructions,” in:The Mechanics of Structures Made of Composite Materials [in Russian], Nauka, Novosibirk (1984), pp. 138–143.

    Google Scholar 

  20. G. A. Vanin and N. P. Semenyuk, “The influence of microstructural destructions on the stability of fibrous shells,”Prikl. Mekh.,20, No. 1, 38–43 (1984).

    Google Scholar 

  21. G. A. Vanin and N. P. Semenyuk, “The stability of shells made of fibrous composites with initial cracks in the microstructure,”Prikl. Mekh.,23, No. 10, 12–19 (1987).

    Google Scholar 

  22. G. A. Vanin and N. P. Semenyuk,The Stability of Shells Made of Composite Materials with Imperfections [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  23. G. A. Vanin, N. P. Semenyuk, and R. F. Emel'yanov,The Stability of Reinforced Shells [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  24. K. Washizu,Variational Methods in Elasticity and Plasticity [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  25. A. S. Vol'mir,The Stability of Deformed Systems [in Russian], Fizmatgiz, Moscow (1967).

    Google Scholar 

  26. S. K. Godunov, “Numerical solution of boundary-value problems for systems of ordinary differential equations,”Uspekhi Mat. Nauk,16, No. 3 (99), 171–174 (1961).

    MATH  MathSciNet  Google Scholar 

  27. É. I. Grigolyuk and V. V. Kabanov,The Stability of Shells [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  28. V. S. Gudramovich,The Stability of Elastoplastic Shells [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  29. A. N. Guz',Fundamentals of the Three-Dimensional Linear Theory of the Stability of Deformable Bodies [in Russian], Vyshcha Shk., Kiev (1986).

    Google Scholar 

  30. A. N. Guz',The Fracture Mechanics of Composite Materials under Compression [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  31. A. N. Guz' and I. Yu. Babich,The Three-Dimensional Theory of the Stability of Deformable Bodies Vol. 4 of the six-volume seriesSpatial Problems of the Theory of Elasticity and Plasticity [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  32. V. I. Gulyaev, V. A. Bazhenov, and P. P. Lizunov,The Nonclassical Theory of Shells and Its Application to the Solution of Engineering Problems [in Russian], Vyshcha Shk., Kiev (1978).

    Google Scholar 

  33. V. G. Zubchaninov,Fundamentals of the Theory of Elasticity and Plasticity [in Russian], Vyssh. Shk., Moscow (1990).

    Google Scholar 

  34. A. A. Il'yushin,Plasticity [in Russian], Gostekhizdat, Moscow (1948).

    Google Scholar 

  35. L. M. Kachanov,Fundamentals of the Theory of Plasticity [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  36. A. B. Kitaigorodskii and N. P. Semenyuk, “The stability of composite conic shells with allowance for cracking in layers,”Mekh. Komp. Mater., No. 6, 1036–1041 (1985).

    Google Scholar 

  37. V. D. Klyushnikov,The Stability of Elastoplastic Systems [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  38. V. V. Vasil'ev, V. D. Protasov, V. V. Bolotin, et al.,Composite Materials: a Reference Book [in Russian], Mashinostroenie, Moscow (1990).

    Google Scholar 

  39. K. G. Kreider and K. M. Prewo, “Boron-fiber-reinforced aluminum,” in:Metallic Matric Composites, Vol. 4 of the eight-volume seriesComposite Materials [in Russian], Mashinostroyeniye, Moscow (1978), pp. 387–405.

    Google Scholar 

  40. Yu. V. Nemirovskii, “The stability of reinforced shells and plates beyond the elastic limit,”Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 67–74 (1970).

    Google Scholar 

  41. C. T. Herakovich (ed.),Inelastic Behavior of Composite Materials, Presented at 1975 ASME Winter Annual Meeting Houston, Texas, November 30–December 5, ASME, New York (1975).

    Google Scholar 

  42. A. G. Piskunov and V. E. Verizhenko,Linear and Nonlinear Problems of Design of Laminated Structures [in Russian], Budivel'nyk, Kiev (1986).

    Google Scholar 

  43. R. B. Rikards and G. A. Teters,The Stability of Shells Made of Composite Materials [in Russian], Zinatne, Riga (1974).

    Google Scholar 

  44. N. P. Semenyuk, “The effect of instability of the material in anisotropic shells,”Prikl. Mekh.,16, No. 9, 115–118 (1971).

    Google Scholar 

  45. N. P. Semenyuk, “The stability of a piecewise-homogeneous cylindrical shell,”Prikl. Mekh.,21, No. 5, 55–60 (1985).

    Google Scholar 

  46. A. M. Skudra and F. Ya. Bulavs,The Structural Theory of Reinforced Plastic, [in Russian], zinatne, Riga

  47. I. A. Birger and B. F. Shorr (ed.),The Thermal Endurance of Machine Components [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  48. G. A. Teters,Complex Loading and Stability of Shells Made of Polymeric Materials [in Russian], Zinatne, Riga (1969).

    Google Scholar 

  49. Yu. N. Shevchenko and R. G. Terekhov,Physical Equations of Thermoviscoplasticity [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  50. A. I. Shinkar', A. B. Kitaigorodskii, and S. K. Borshchevskaya, “Calculation of the eigenvalues for systems of linear ordinary differential equations,” in:Algorithms and Programs for Solving Problems of the Mechanics of a Deformable Solid [in Russian], Naukova Dumka, Kiev (1976), pp. 154–159.

    Google Scholar 

  51. I. Ya. Shtaerman and A. A. Pikovskii,Fundamentals of the Theory of Building Structures [in Russian], Stroiizdat, Moscow-Leningrad (1939).

    Google Scholar 

  52. I. Yu. Babich, “Stability theory of rods, plates, and shells from composite materials,”Int. Appl. Mech.,29, No. 10, 842–847 (1993).

    Article  Google Scholar 

  53. I. Yu. Babich, A. V. Boriseiko, and N. P. Semenyuk, “Stability of cylindrical shells formed from composite materials beyond the elastic limit,”Int. Appl. Mech.,31, No. 12, 978–984 (1995).

    Article  Google Scholar 

  54. I. Yu. Babich, A. V. Boriseiko, and N. P. Semenyuk, “Stability of conical shells from composites beyond the elastic limit under axial compression,”Int. Appl. Mech.,32, No. 12, 964–969 (1996).

    Article  MATH  Google Scholar 

  55. I. Yu. Babich, A. V. Boriseiko, and N. P. Semenyuk, “Stability of conical shells formed from reinforced materials under external pressure beyond the elastic limit,”Int. Appl. Mech.,33, No. 3, 209–216 (1997).

    Google Scholar 

  56. I. Yu. Babich and A. N. Guz', “Stability of fibrous composites,”Appl. Mech. Rev.,45, No. 2, 61–80 (1992).

    Google Scholar 

  57. I. Yu. Babich and N. P. Semenyuk, “Stability and initial postbuckling behavior of shells made of composites,”Int. Appl. Mech.,34, No. 6, 507–537 (1998).

    MathSciNet  Google Scholar 

  58. I. Yu. Babich and N. P. Semenyuk, “Theoretical models in problems of the stability of shells made of composites,”Int. Appl. Mech.,34, No. 10, 941–947 (1998).

    Google Scholar 

  59. I. Yu. Babich, N. P. Semenyuk, and A. V. Boriseiko, “Stability and efficient design of cylindrical shells of metal composites subject to combination loading,”Int. Appl. Mech.,35, No. 6, 595–601 (1999).

    Google Scholar 

  60. A. N. Guz' and I. Yu. Babich, “Three-dimensional stability problems of composite materials and composite construction components,”Rozprawy Inzynierskie,27, No. 4, 613–631 (1979).

    MathSciNet  Google Scholar 

  61. R. Hill, “A general theory of uniqueness and stability in elastic-plastic solids,”J. Mech. Phys. Solids,6, 236–249 (1958).

    Article  MATH  ADS  Google Scholar 

  62. J. W. Hutchinson, “Plastic buckling,”Adv. Appl. Mech.,14, 67–144 (1977).

    Article  Google Scholar 

  63. F. R. Shanley, “Inelastic column theory,”J. Aeronaut. Sci.,14, 261–267 (1947).

    Google Scholar 

Download references

Authors

Additional information

S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 6, pp. 3–36, June, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babich, I.Y., Semenyuk, N.P. The stability of cylindrical and conic shells made of composite materials with an elastoplastic matrix. Int Appl Mech 36, 697–728 (2000). https://doi.org/10.1007/BF02681981

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681981

Keywords

Navigation