Skip to main content
Log in

Control of manipulators and wheeled transport robots as systems of rigid bodies

  • Published:
International Applied Mechanics Aims and scope

Abstract

Problems of control of robots (manipulators and wheeled transport robots) that are considered as controllable systems of rigid bodies with holonomic and nonholonomic constraints are reviewed. The basic problems that arise in designing systems of control of such facilities are considered. Namely, the equations of model motion are derived, a specified trajectory is parametrized, and a stabilization algorithm is synthesized (including linear, nonlinear, adaptive, and robust controllers). Some model examples are given to illustrate the efficiency of the algorithms considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Aliev, B. A. Bordyug, and V. B. Larin, “Design of the optimal stationary controller,”Izv. Akad. Nauk SSSR, Tekh. Kib., No. 2, 143–151 (1985).

    Google Scholar 

  2. F. A. Aliev, B. A. Bordyug, and V. B. Larin,H 2-Optimization and State-Space Method in the Problem of Synthesis of Optimal Controllers [in Russian], ÉLM, Baku (1991).

    Google Scholar 

  3. A. A. Andronov and A. G. Mayer, “The Mises problem in the theory of direct control and the theory of point transformations of a surface,”Dokl. Akad. Nauk SSSR,43, No. 2, 58–62 (1944).

    Google Scholar 

  4. A. A. Andronov and A. G. Mayer, “The Vyshnegradskii problem in the theory of direct control,”Dokl. Akad. Nauk SSSR,45, No. 5, 345–348 (1945).

    Google Scholar 

  5. E. A. Barabashin,Lyapunov Functions [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  6. B. E. Berbyuk,The Dynamics and Optimization of Robot Systems [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  7. V. L. Veits, M. Z. Kolovskii, and A. E. Kochura,The Dynamics of Controllable Machine Plants [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  8. V. V. Voevodin and Yu. A. Kuznetsov,Matrices and Calculations [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  9. M. K. Vukobratović and D. M. Stokić,Control of Robot Manipulators [Russian translation], Nauka, Moscow (1985).

    Google Scholar 

  10. V. V. Dobronravov,Fundamentals of the Mechanics of Nonholonomic Systems [in Russian], Vyssh. Shk. (1970).

  11. H. Kwakernaak and R. Sivan,Linear Optimal Control Systems, Wiley-Interscience, a division of John Wiley & Sons, New York (1972).

    MATH  Google Scholar 

  12. N. A. Kil'chevskii, N. I. Remizov, and E. N. Kil'chevskaya,Fundamentals of Theoretical Mechanics [in Russian], Vyshcha Shk., Kiev (1986).

    Google Scholar 

  13. V. B. Larin, “Algorithmization of the selection of generalized coordinates,”Izv. RAN, Mekh. Tverd. Tela, No. 2, 37–42 (1993).

    Google Scholar 

  14. V. B. Larin, “Week control of underdamped systems,”Ukr. Mat. Zh.,39, No. 1, 52–56 (1987).

    MathSciNet  Google Scholar 

  15. V. B. Larin, “H 2-optimization and parametrization of controllers in the standard synthesis problem. 1,”Izv. Akad. Nauk SSSR, Tekh. Kib., No. 4, 15–24 (1990).

    Google Scholar 

  16. V. B. Larin, “Manipulator control problems,”Probl. Upravl. Inform., No. 6, 5–18 (1996).

    Google Scholar 

  17. V. B. Larin, “Optimization in the Hardy space and the problem of controller parametrization (review),”Prikl. Mekh.,28, No. 2, 3–20 (1992).

    MathSciNet  Google Scholar 

  18. V. B. Larin, “Problems of control of walking machines,”Prikl. Mekh.,29, No. 10, 123–128 (1993).

    MathSciNet  Google Scholar 

  19. V. B. Larin, “Compensation of nonlinear friction in robot systems,”Prikl. Mekh.,32, No. 5, 69–74 (1996).

    Google Scholar 

  20. V. B. Larin, E. Ya. Antonyuk, and V. M. Matiyasevich, “Simulation of wheeled machines,”Prikl. Mekh.,34, No. 1, 103–110 (1998).

    MATH  Google Scholar 

  21. V. B. Larin, “Stabilization of linear systems with undetermined parameters,”Prikl. Mekh.,34, No. 2, 92–99 (1998).

    MATH  MathSciNet  Google Scholar 

  22. V. B. Larin, “Stabilization of the motion of systems with nonholonomic constraints,”Prikl. Mekh.,34, No. 7, 90–100 (1998).

    MATH  MathSciNet  Google Scholar 

  23. V. B. Larin, “Control of a composite wheeled carriage,”Prikl. Mekh.,34, No. 10, 93–100 (1998).

    MATH  Google Scholar 

  24. V. B. Larin, “On some algorithms of wheel-carriage control,”Prikl. Mekh.,36, No. 3, 122–132 (2000).

    MATH  Google Scholar 

  25. L. G. Lobas,Nonholonomic Models of Wheeled Carriages [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  26. L. G. Lobas and V. G. Khrebet, “Pendulum rolling double-link systems,”Prikl. Mekh.,29, No. 2 82–88 (1993).

    Google Scholar 

  27. L. G. Lobas and V. G. Khrebet, “The dynamic behavior of a pendulum rolling double-link system at the boundary of the stability region,”Prikl. Mekh.,29, No. 4, 78–86 (1993).

    MathSciNet  Google Scholar 

  28. L. G. Lobas and V. G. Khrebet, “The limiting periodic motions of pendulum rolling double-link systems,”Prikl. Mekh.,29, No. 8, 85–93 (1993).

    MathSciNet  Google Scholar 

  29. A. I. Lurie,Analytical Mechanics [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  30. V. S. Medvedev, A. G. Leskov, and A. S. Yushchenko,Control Systems of Robot Manipulators [in Russian] Nauka, Moscow (1978).

    Google Scholar 

  31. Yu. I. Neimark and N. A. Fufaev,The Dynamics of Nonholonomic Systems [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  32. E. P. Popov, A. F. Vereshchagin, and S. L. Zenkevich,Robot Manipulators: Dynamics and Algorithms [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  33. P. Y. Rocard, L'instabilité en Mécanique. Automobiles. Avious. Ponts Suspendus, Masson, Paris (1954).

    Google Scholar 

  34. V. I. Utkin,Sliding Modes and Their Application in Systems of Variable Structures [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  35. K. S. Fu, R. C. Gonzales, and C. S. G. Lee,Tutorial on Robotics [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  36. F. L. Chernous'ko, N. N. Bolotnik, and V. G. Gradetskii,Robot Manipulators [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  37. F. A. Aliev, B. A. Boldyug, and V. B. Larin, “Comments on a stability enhancing scaling procedure for Schur-Riccati solvers,”Syst. Control Lett.,14, p. 453 (1990).

    Article  Google Scholar 

  38. F. A. Aliev, B. A. Bordyug, and V. B. Larin, “Discrete generalized algebraic Riccati equations and polynomial matrix factorization,”Syst. Control Lett.,18, 49–59 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  39. F. A. Aliev and V. B. Larin, “J-spectral factorization of polynomial matrices relative to imaginary axis,” in:Proc. IFAC Symposium on Robust Control Design, Rio de Janeiro (1994), pp. 318–322.

  40. F. A. Aliev and V. B. Larin, “Comments onH 2-optimal zeros,”IEEE Trans., Automat. Control,41, No. 7, p. 1086 (1996).

    Article  MathSciNet  Google Scholar 

  41. F. A. Aliev and V. B. Larin, “Algorithm ofJ-spectral factorization of polynomial matrices,”Automatics,33, No. 12, 2179–2182 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  42. F. A. Aliev and V. B. Larin,Optimization of Linear Control Systems (Analytical Methods and Computational Algorithms), Gordon and Breach, Amsterdam (1998).

    Google Scholar 

  43. F. Alonge, F. D'Ippolito, and F. M. Raimondi, “An adaptive control law for robotic manipulator without velocity feedback,” in:Proc. IFAC 14th Triennial World Congress on Motion Control, Beijing (1999), pp. 239–244.

  44. Baptista Luis Filipe and M. G. Sa da Costa Jose, “A force control approach of robotic manipulators with neural network compensation,” in:Proc. IFAC 14th Triennial World Congress on Force and Position Control, Beijing (1999), pp. 173–178.

  45. S. Battilotti, L. Lanary, and R. Ortega, “A unified approach to global set point control for rigid and elastic joint robots,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 49–54.

  46. A. M. Bloch, M. Reyhanoglu, and N. M. McClamroch, “Control and stabilization of nonholonomic dynamic systems,”IEEE Trans., Automat. Control,37, No. 11, 1746–1757 (1972).

    MathSciNet  Google Scholar 

  47. S. Boyd, El. Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix Inequalities in Systems and Control Theory, SIAM Books, Philadelphia (1994).

    Google Scholar 

  48. P. Bolzern, A. Casati, A. Locatelli, and A. Maroni, “Control of four-wheel steering vehicles: a design based on μ-synthesis techniques,” in:Proc. IFAC 13th Triennial World Congress on Advanced Vehicle Dynamics, San Francisco (1996), pp. 53–58.

  49. C. Bric and D. Popovic, “A collision-space approach to trajectory planning of coordinated robots,” in:Proc. IFAC 13th Triennial World Congress on Mobile Robots, San Francisco (1996), pp. 205–210.

  50. F. Bullo and R. M. Murray, “Experimental comparison of trajectory trackers for a car with trailers,” in:Proc. IFAC 13th Triennial World Congress on Application of Differential Flatness, San Francisco (1996), pp. 407–412.

  51. P. Caccavale and L. Villani, “Output feedback tracking control for a class of mechanical systems,” in:Proc. IFAC 14th Triennial World Congress on Motion Control, Beijing (1999), pp. 245–250.

  52. C. Canudas de Wit and O. J. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,”IEEE Trans., Automat. Control.,37, No. 11, 1791–1797 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  53. C. Canudas de Wit, “Robust control for servo-mechanisms under inexact friction compensation,”Automatica,29, No. 3, 757–761 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  54. Chen Hsieh and Yih-Chieh Pan, “Sensor-accuracy precision positioning with the existence of static friction. Pt I. Dynamic model of friction during the pre-sliding range,” in:Proc. IFAC 14th Triennial World Congress on Motion Control, Beijing (1999), pp. 215–220.

  55. Chen Hsieh and Yih-Chieh Pan, “Sensor-accuracy precision positioning with the existence of static friction. Pt II. Parameter estimation of static friction and integral control for practical positioning problems,” in:Proc. IFAC 14th Triennial World Congress on Motion Control, Beijing (1999), pp. 211–226.

  56. S. Chiaverini, B. Siciliano, and L. Villani, “Parallel force/position control schemes with experiments on industrial robot manipulators,” in:Proc. IFAC 13th Triennial World Congress on Robotic Force Control, San Francisco (1996), pp. 25–30.

  57. M. Egerstedt, X. Hu, and A. Stotsky, “A hybrid control approach to action coordination for mobile robots,” in:Proc. IFAC 14th Triennial World Congress on Mobile Robots, Beijing (1999), pp. 131–136.

  58. A. Eusebi and C. Melchiorri, “Stability and control issue for telemanipulation systems with time-delays,” in:Proc. IFAC 13th Triennial World Congress on Robot Application, San Francisco (1996), pp. 289–294.

  59. Fuchun Sun, Zengqi Sun, Chundi Mu, and Rongjun Zhang, “A neural network tracking controller for robot manipulators with unknown dynamics,” in:Proc. IFAC 14th Triennial World Congress on Motion Control, Beijing (1999), pp. 233–238.

  60. S. S. Ge, “Robust adaptive control of robots based on static neural networks,” in:Proc. IFAC 13th Triennial World Congress on Learning Robot Control, San Francisco (1996), pp. 139–144.

  61. Gerardo Guerrero-Ramhrez and Yu Tang, “Motion control of rigid robots driven by current-fed induction motors,” in:Proc. IFAC 14th Triennial World Congress on Motion Control, Beijing (1999), pp. 227–232.

  62. V. K. Gupta, “Dynamic analysis of multi-rigid-body systems,”Trans. ASME, Ser. B,8, pp. 886–892 (1974).

    Google Scholar 

  63. W. Ham, “Adaptive control based on explicit model of robot manipulator,”IEEE Trans., Automat. Control,38, No. 4, 654–658 (1993).

    MATH  MathSciNet  Google Scholar 

  64. H. Hemami and B. F. Wyman, “Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane,”IEEE Trans., Automat. Control,FC-24, No. 4, 526–535 (1979).

    Article  MathSciNet  Google Scholar 

  65. T. Hamel and D. Meizel, “Robust control laws for wheeled mobile robots,” in:Proc. IFAC 13th Triennial World Congress on Mobile Robots, San Francisco (1996), pp. 175–180.

  66. Hu Yang Zeng and E. J. Davison, “An exact solution to the position/force control problem for constrained robotic manipulators,” in:Proc. IFAC 14th Triennial World Congress on Robot Control Methodologies, Beijing (1999), pp. 155–160.

  67. Kati F. Dusko, “Genetic algorithm tuning of connectionist controller for compliant robotic tasks,” in:Proc. IFAC 14th Triennial World Congress on Force and Position Control, Beijing (1999), pp. 155–160.

  68. R. Kelly and V. Santibanes, “A class of global regulators by using output feedback for elastic joint robots,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 37–40.

  69. W. Khalil and F. Boyer, “Newton-Euler based approach of simulation of flexible manipulator,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 121–126.

  70. W. Kraus, Jr. and B. McCarragher, “Control of flexible load deformations and environment contact forces in dual-arm manipulation,” in:Proc. IFAC 13th Triennial World Congress: Flexible Robots, San Francisco (1996), pp. 61–66.

  71. G. Langer and I. D. Landau, “Closed loop identification as a design tool for the robust digital control of a 360° flexible arm,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 49–54.

  72. V. B. Larin, “Control of a walking apparatus,”Sov. J. Com. Syst. Sci.,27, No. 1, 1–8 (1989).

    MATH  MathSciNet  Google Scholar 

  73. V. B. Larin, “Optimization in the Hardy space and the problem of the parametrization of controllers,”Int. Appl. Mech.,28, No. 2, 67–84 (1992).

    Article  MathSciNet  Google Scholar 

  74. V. B. Larin, “Problems of control of machines that walk,”Int. Appl. Mech.,29, No. 10, p. 868 (1993).

    Article  MathSciNet  Google Scholar 

  75. V. B. Larin, “Compensating for nonlinear friction in robot systems,”Int. Appl. Mech.,32, No. 5, 384–388 (1996).

    Google Scholar 

  76. V. B. Larin, “Problem of control of a hopping apparaturs,”J. Franclin Inst.,335, No. 3, 579–593 (1998).

    MathSciNet  Google Scholar 

  77. V. B. Larin, “Stabilization of linear systems with indeterminate parameters,”Int. Appl. Mech.,34, No. 2, 188–195 (1998).

    MathSciNet  Google Scholar 

  78. V. B. Larin, “Stabilizing the motion of a system with nonholonomic constraints,”Int. Appl. Mech.,34, No. 7, 683–693 (1998).

    MathSciNet  Google Scholar 

  79. V. B. Larin, “Control of composite wheeled system,”Int. appl. Mech.,34, No. 10, 1007–1013 (1998)

    Google Scholar 

  80. V. B. Larin, “Algorithms of control of a manipulator,”Stability and Control: Theory and Application (SACTA),1, No. 1, 71–76 (1998).

    MathSciNet  Google Scholar 

  81. V. B. Larin, “Algorithms of control of a manipulator,” in:Proc. Int. Conf. on Systems, Signals, Control, and Computers, Vol. 3, Durban, South Africa (1998), pp. 138–142.

  82. V. B. Larin, “Algorithm for solving algebraic Riccati equation which has singular Hamiltonian matrix,”Syst. Control Lett.,36, 231–239 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  83. V. B. Larin, “About the Newton iteration for spectral factorization,”Syst. Control Lett.,37, 243–246 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  84. V. B. Larin, “Generalized matrix sign function algorithm for algebraic Riccati equation,” in:Proc. IFAC 14th Triennial World Congress on Riccati Equation and Algorithms, Beijing (1999), pp. 141–146.

  85. V. B. Larin and F. A. Aliev, “Construction of square root factor for solution of the Lyapunov matrix equation,”Syst. Control Lett.,20, 109–112 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  86. V. B. Larin and F. A. Aliev, “Generalized Lyapunov equation and factorization of matrix polynomials,”Syst. Control Lett.,21, 485–491 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  87. V. B. Larin and F. C. Aliev, “On the computation of balancing transformations for a linear controllable system,”Electric.,1, No. 3, 182–192 (1993).

    MathSciNet  Google Scholar 

  88. V. B. Larin, E. Ya. Antonyuk, and V. M. Matiyasevich, “Modeling wheeled machines,”Int. Appl. Mech.,34, No. 1, 93–100 (1998).

    MATH  Google Scholar 

  89. V. B. Larin, Cheremensky, and N. Dakev, “Some numerical methods of linear design: time invariant cases,”J. Theor. Appl. Mech.,24, No. 3, 17–21 (1993).

    MATH  Google Scholar 

  90. T. Leo and G. Orlando, “Robust discrete time control of a nonholonomic mobile robot,” in:Proc. IFAC 14th Triennial Word Congress on Mobile Robots, Beijing (1999), pp. 137–142.

  91. Y-H. Liu and S. Arimoto, “Implicit and explicit force controllers for rheoholonomically constrained manipulators and their extensions to distributed cooperation control,” in:Proc. IFAC 13th Triennial word Congress on Robotic Force Control, San Francisco (1996), pp. 1–6.

  92. L. J. Love and W. J. Book, “Adaptive impedance control for bilateral teleoperation of long reach, flexible manipulators,” in:Proc. IFAC 13th Triennial World Congress on Robotic Adaptive Control, San Francisco (1996), pp. 211–216.

  93. P. Lucibello and S. Panzieri, “Cyclic control of a two-link flexible arm,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 79–84.

  94. Luo Zhi-Wei and Ito Masami, “Robust gain scheduled position/force hybrid control for a robot interacting with uncertain flexible environment,” in:Proc. IFAC 14th Triennial World Congress on Force and Position Control, Beijing (1999), pp. 167–172.

  95. S. Lyashevskiy and Y. Chen, “Feedback control of robotic manipulators with induction motors,” in:Proc. IFAC 13th Triennial World Congress on Control of Robot Motion, San Francisco (1996), pp. 379–384.

  96. F. Matsuno and M. Hatayama, “Robust cooperative control of two two-link flexible manipulators,” in:Proc. IFAC 13th Triennial World Congress on flexible Robots, San Francisco (1996), pp. 67–72.

  97. P. Matsuno, S. Kasai, M. Tanaka, and K. Wakashiro, “Robust force control of one-link flexible arms,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 115–120.

  98. C. Melchiorri, “Translational and rotational slip detection and control in robotic manipulation,” in:Proc. IFAC 14th Triennial World Congress on Force and Position Control, Beijing (1999), pp. 161–166.

  99. M. Moallem, R. V. Patel, and K. Khorasani, “An inverse dynamics control strategy for tip position tracking of flexible multi-link manipulators,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996) pp. 85–90.

  100. O. Morgul, “On boundary control of single link flexible robot arms,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 127–132.

  101. R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,”IEEE Trans., Automatic Control,38, No. 3, 700–716 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  102. T. Nakayama and S. Arimoto, “H-optimal tuning of the saturated PID controller for robot arms using the passivity and dissipativity,” in:Proc. IFAC 13th Triennial World Congress on Robotic Adaptive Control, San Francisco (1996), pp. 217–222.

  103. O. H. Nasisi, R. Carelli, and B. Kuchen, “Tracking adaptive control of robots with visual feedback,” in:Proc. IFAC 13th Triennial World Congress on Robotic Adaptive Control, San Francisco (1996), pp. 265–270.

  104. G. Oriolo, S. Panzleri, and G. Ulivi, “Cyclic learning control of chained from systems with application to car-like robots,” in:Proc. IFAC 13th Triennial World Congress on Mobile Robots, San Francisco (1996), pp. 187–192.

  105. S. Ostrovskaya and J. Angeles, “Nonholonomic systems revisited within the framework of analytical mechanics,”Appl. Mech. Rev.,51, No. 7, p. 432 (1998).

    Google Scholar 

  106. R. P. Pagilla and M. Tomizuka, “An adaptive output feedback controller for robot arms: stability and experiments,” in:Proc. IFAC 13th Triennial World Congress on Robotic Adaptive Control, San Francisco (1996), pp. 247–252.

  107. R. Tepez, D. Kohli, and A. Kumagai, “Near-minimum time controller for robotic manipulators,” in:Proc. IFAC 13th Triennial World Congress on Control of Robot Motion, San Francisco (1996), pp. 373–378.

  108. I. R. Peterson and C. V. Hollot, “A Riccati equation approach to the stabilization of uncertain linear systems,”Automatica,22, No. 4, 397–411 (1986).

    Article  MathSciNet  Google Scholar 

  109. J. Ping, H. Chen, Y. Wang, and J. Lin, “Robot visual servoing for curve tracking,” in:Proc. IFAC 13th Triennial World Congress on Vision and Assembly, San Francisco (1996), pp. 337–342.

  110. D. O. Popa and J. T. Wen, “Characterization of singular controls for nonholonomic path planning,” in:Proc. IFAC 13th Triennial World Congress on Nonlinear Control of Induction Motors and Nonholonomic Systems, San Francisco (1996). pp. 61–66.

  111. M. Qungchun, Changjiu Zhou, K. Jagannathan, K. S. Leong, and J. Hohnbo, “Real-time path planning for intelligent robots system based on vision information,” in:Proc. IFAC 14th Triennial World Congress on Control of Robot Systems, Beijing (1999), pp. 377–382.

  112. V. Santibanez and R. Kelly, “Set-point in task space of robot manipulators with torque constraints: state and output feedback cases,” in:Proc. IFAC 13th Triennial World Congress on Robot Application, San Francisco (1996), pp. 295–300.

  113. V. Santibacez and R. Kelly, “Global asymptotic stability of the PD control with computed feedforward in closed loop with robot manipulators,” in:Proc. IFAC 14th Triennial World Congress on Robot control Methodologies, Beijing (1999), pp. 197–202.

  114. R. G. Shin and N. D. McKay, “A dynamic programming approach to trajectory planning of robotic manipulators,”IEEE Trans., Automat. Control,AC-31, No. 6, 491–500 (1986).

    Article  MATH  Google Scholar 

  115. R. G. Shin and N. D. McKay, “Selection of near-minimum time geometric paths for robotic manipulators,”IEEE Trans., Automat. Control,AC-31, No. 6, 501–511 (1986).

    Article  MATH  Google Scholar 

  116. O. J. Sordalen and O. Egaland, “Exponential stabilization of nonholonomic chained systems,”IEEE Trans., Automat. Control, No 1, 34–49 (1995).

    Google Scholar 

  117. A. Stotsky, X. Hu, and M. Egerstedt, “Sliding mode control of a car-like mobile robot using single-track dynamic model,” in:Proc. IFAC 14th Triennial World Congress on Mobile Robots, Beijing (1999), pp. 119–124.

  118. C-Y. Su and J. Stepanenko, “Hybrid adaptive/robust control of robotic manipulators driven by brushless DC motors,” in:Proc. IFAC 13th Triennial World Congress on Robotic Adaptive Control, San Francisco (1996), pp. 277–282.

  119. M. Takeshi, “Transfer function characterization of output regulation control in active magnetic bearings,” in:Proc. IFAC 14th Triennial World Congress on Control of Robot Systems (1999), pp. 383–388.

  120. A. Morecki, G. Bianchi and K. Jaworec, “Theory and practice of robots and manipulators,”Proc. ROMANSY 10: the 10th Cism. IFToMM Symposium: Courses and Lectures, No.361, Springer Verlag, Wien-New York (1995).

    MATH  Google Scholar 

  121. A. Tuneski and Miomir Vukobratovic, “Modeling and adaptive control of robots interacting with environment,” in:Proc. IFAC 14th Triennial World Congress on Force and Position Control, Beijing (1999), pp. 143–148.

  122. V. I. Utkin, “Variable structure systems with sliding mode: a survey,”IEEE Trans., Automat. Control,AS-22, 212–222 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  123. J. Vagners, “On the nonlinear control of underactuated two-link manipulators,” in:Proc. IFAC 13th Triennial World Congress on Control of Underactuated Mechanical Systems, San Francisco (1996), pp. 437–442.

  124. F. Verduzco and J. Alvarez, “Horseshoes in a PD-controlled 2-D of robot manipulator,” in:Proc. IFAC 14th Triennial World Congress on Robot Control Methodologies, Beijing (1999), pp. 203–208.

  125. L. Villani, C. Canudas De Wit, and B. Brogliato, “An exponentially stable adaptive force/position control for robot manipulators,” in:Proc. IFAC 13th Triennial World Congress on Robotic Force Control, San Francisco (1996), pp. 7–12.

  126. J. Wang, “On-line path planning for autonomous mobile robots using recurrent neural networks,” in:Proc. IFAC 14th Triennial World Congress on Mobile Robots, Beijing (1999), pp. 113–118.

  127. D. Wenjie and W. Huo, “quasi-exponential stabilization of wheeled mobile robots with uncertainty,” in:Proc. IFAC 14th Triennial World Congress on Mobile Robots, Beijing (1999), pp. 125–130.

  128. S-L. Wu and S-K. Lin, “Damped-rate resolved-acceleration control for manipulators,” in:Proc. IFAC 13th Triennial World Congress on Control of Robot Motion, San Francisco (1996), pp. 349–354.

  129. W. Yim and S. N. Singh, “Nonlinear inverse and predictive end point trajectory control of flexible macro-micro manipulators,” in:Proc. IFAC 13th Triennial World Congress on Flexible Robots, San Francisco (1996), pp. 97–102.

  130. D. Ying, S. Sonfjiao, and Z. Nanning, “Adaptive control of robot manipulators with only position measurements,” in:Proc. IFAC 14th Triennial World Congress on Robot Control Methodologies, Beijing (1999), pp. 179–184.

  131. H. Yu and S. Lloid, “Adaptive motion and force control of manipulators during constrained motion tasks,” in:Proc. IFAC 13th Triennial World Congress on Robot Adaptive Control (1996), pp. 259–264.

  132. J. Juh, “An adaptive and learning control system for underwater robots,” in:Proc. IFAC 13th Triennial World Congress on Learning Robot Control, San Francisco (1996), pp. 145–150.

  133. M. Zasadzinski, M. F. Khelei, M. Darouach, and E. Richard, “Disturbance attenuation via a reduced-order output feedback controller for rigid robotic manipulators,” in:Proc. IFAC 13th Triennial World Congress on Control of Robot Motion, San Francisco (1996), pp. 403–408.

  134. S. M. Ziauddin and A. M. S. Zalzala, “Model-based network compensation for uncertainties of robotic arms,” in:Proc. IFAC 13th Triennial World Congress on Learning Robot Control, San Francisco (1996), pp. 157–162.

Download references

Authors

Additional information

S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 4, pp. 35–67, April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larin, V.B. Control of manipulators and wheeled transport robots as systems of rigid bodies. Int Appl Mech 36, 449–481 (2000). https://doi.org/10.1007/BF02681970

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681970

Keywords

Navigation