Skip to main content
Log in

Minimax estimates of a linear parameter function in a regression model under restrictions on the parameters and variance-covariance matrix

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Minimax nonhomogeneous linear estimators of scalar linear parameter functions are studied in the paper under restrictions on the parameters and variance-covariance matrix. The variance-covariance matrix of the linear model under consideration is assumed to be unknown but from a specific set R of nonnegativedefinite matrices. It is shown under this assumption that, without any restriction on the parameters, minimax estimators correspond to the least-squares estimators of the parameter functions for the “worst” variance-covariance matrix. Then the minimax mean-square error of the estimator is derived using the Bayes approach, and finally the exact formulas are derived for the calculation of minimax estimators under elliptical restrictions on the parameter space and for two special classes of possible variance-covariance matrices R. For example, it is shown that a special choice of a constant q 0 and a matrixW 0 defining one of the above classes R leads to the well known Kuks—Olman admissible estimator (see [16]) with a known variance-covariance matrixW 0. Bibliography:32 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alson, “Centered ellipsoids for which an admissible linear estimation is the minimax estimator,”Statistics,24, 85–94 (1993).

    Article  MATH  Google Scholar 

  2. J. K. Baksalary and T. Mathew, “Admissible linear estimation in general Gauss-Markov model with an incorrectly specified dispersion matrix,”J. Multivariate Anal.,27, 53–67 (1988).

    Article  MATH  Google Scholar 

  3. J. K. Baksalary and A. Markiewich, “Admissible linear estimators of arbitrary vectors of parameter functions in the general Causs-Markov model,”J. Statist. Planning Inference,26, 161–171 (1990).

    Article  MATH  Google Scholar 

  4. D. Birkes and Y. Dodge,Alternative Methods of Regressions, John Wiley, New York (1993).

    Google Scholar 

  5. L. D. Broemeling,Bayesian Analysis of Linear Models, Marcel Decker, New York (1985).

    MATH  Google Scholar 

  6. H. Bunke and O. Bunke,Statistical Inference in Linear Models, Vol. 1, John Wiley, Chichester (1986).

    MATH  Google Scholar 

  7. S. L. Dixon and J. W. McKean, “Rank-based analysis of the heteroscedastic linear model,”J. Amer. Statist. Assoc.,91, 699–712 (1996).

    Article  MATH  Google Scholar 

  8. N. Gaffke and B. Heilinger, “Admissible and minimax linear estimators in linear models with restricted parameter space,”Statistics 20, 487–508 (1989).

    Article  MATH  Google Scholar 

  9. W. Hardle,Applied nonparametric regression, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  10. B. heilinger, “Linear Bayes estimation in linear models with partially restricted parameter space,”J. Statist. Planning Inference,36, 175–184 (1993).

    Article  Google Scholar 

  11. K. Hoffman, “All admissible linear estimators of the regression parameter vector in the class of an arbitrary parameter subset,”J. Statist. Planning Inference,48, 371–377 (1995).

    Article  Google Scholar 

  12. R. A. Horn and C. A. Johnson,Matrix Analysis, Cambridge University Press, Cambridge (1985).

    MATH  Google Scholar 

  13. T. Honda, “Minimax estimators in the MANOVA model for quadratic loss and unknown covariance matrix,”J. Multivar. Anal.,36, 113–120 (1991).

    Article  MATH  Google Scholar 

  14. J. Kleffe, “A minimax property of translation invariant estimators for variance components,”Zastosowania Matematyki Applicationes Mathematicae,XVI, No. 3, 445–458 (1979).

    Google Scholar 

  15. W. Klonecki and S. Zontek, “On the structure of admissible linear estimators,”J. Multivar. Anal.,24, 11–30 (1988).

    Article  MATH  Google Scholar 

  16. J. Kuks and V. Olman, “Minimax linear estimators of regression coefficients,”Izv. Akad. Nauk Eston. SSR,21, 66–72 (1972).

    MATH  Google Scholar 

  17. J. Kuks, “Minimax estimation of regression coefficients,”Izv. Akad. Nauk Eston. SSR,21, 73–78 (1972).

    MATH  Google Scholar 

  18. H. Lauter, “A minimax linear estimator for linear parameters under restrictions in the form of inequalities,”Math. Operationsforsch. und Statist.,5, 689–695 (1975).

    Google Scholar 

  19. D. Lindley and A. F. M. Smith, “Bayes estimators for the linear models,”J. Royal Statistical Soc.,B33, 1–41 (1972).

    Google Scholar 

  20. C. Y. Lu and W. X. Li, “Admissibility of linear estimators in linear models with incomplete ellipsoidal constraints,”Acta Math. Sinica,37, 289–295 (1994).

    MATH  Google Scholar 

  21. D. W. Marquard and R. D. Snee, “Ridge regression in practice,”American Statistician,29, 3–20 (1975).

    Article  Google Scholar 

  22. H. G. Muller,Nonparametric regression analysis of longitudinal data, Lecture Notes in Statistics, Vol. 46, Springer-Verlag, Berlin-Heidelberg (1988).

    Google Scholar 

  23. O. Nakonechny,Minimax Estimation of Functionals of Solutions of Variation Equations in Hilbert Spaces [in Russian], KGU, Kiev (1985).

    Google Scholar 

  24. C. R. Rao,Linear Statistical Inference and Its Applications, John Wiley, New York (1973).

    MATH  Google Scholar 

  25. C. R. Rao, “Estimation of parameters in linear models,”Ann. Stat.,10, 245–255 (1976).

    Google Scholar 

  26. R. T. Rockafeller,Convex Analysis, Princeton University Press, Princeton (1970).

    Google Scholar 

  27. A. Schick, “Efficient estimates in linear and nonlinear regression with heteroscedastic errors,”J. Statist. Planning Inference,58, 371–387 (1997).

    Article  MATH  Google Scholar 

  28. G. Smith and F. Campbell, “A critique of some regression methods,”J. American Statistical Associations,75, 87–103 (1980).

    Article  Google Scholar 

  29. R. G. Staudte and R. G. Sheather,Robust Estimation and Testing, John Wiley, New York (1990).

    MATH  Google Scholar 

  30. Q. L. Wu, “Inadmissibility and admissibility results for unbiased loss estimates based on Gauss-Markov estimators,”Acta Math. Appl. Sinica (English Ser.),9, 281–288 (1993).

    Article  MATH  Google Scholar 

  31. J. L. Zhan, “Admissible linear estimators of regression coefficients under quadratic loss,”Chinese J. Math.,22, 53–63 (1994).

    MATH  Google Scholar 

  32. S. Zontek, “On characterization of linear admissible estimators: An extension of a result due to C. R. Rao,”J. Multivariate Analysis,36, 1–12 (1987).

    Article  Google Scholar 

Download references

Authors

Additional information

Translated fromObchyslyuval'na ta Prykladna Matematyka, No. 81, 1997, pp. 79–92.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michálek, J., Nakonechny, O. Minimax estimates of a linear parameter function in a regression model under restrictions on the parameters and variance-covariance matrix. J Math Sci 102, 3790–3802 (2000). https://doi.org/10.1007/BF02680236

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680236

Keywords

Navigation