Skip to main content
Log in

Interfacial tension of aluminum in cryolite melts

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The interfacial tension between aluminum and cryolite melts containing different salt additions has been measured based on a combination of the sessile drop and X-ray radiographie technique. A computer program was used to calculate the interfacial tension from approximately twenty randomly measured coordinate points of the drop profile. Aluminum and salt mixtures containing different amounts of Na3AlF6, A1F3, NaF, A12O3, CaF2, KF, LiF, and NaCl were melted in a graphite or alumina crucible in a graphite resistor furnace under an argon atmosphere. The interfacial tension was found to be strongly dependent on the NaF/AlF3 ratio. At the cryolite composition the interfacial tension was 481 mN/m at 1304 K, while it was 650 mN/m when the NaF/AlF3 ratio was equal to 1.5. The change in interfacial tension with composition is explained by sodium enrichment of the Al/melt interface. Additions of A12O3 increased the interfacial tension for a given NaF/AlF3 ratio. KF was found to be surface active, while CaF2, LiF, and NaCl slightly increased the interfacial tension by decreasing the sodium activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Thonstad and Y. Liu:Light Metals, Proceedings of Sessions 110th AIME Annual Meeting, G. M. Bell, ed., Chicago, IL, 1981, p. 303.

  2. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad:Aluminum Electrolysis, 2nd ed., Aluminum-Verlag, Duesseldorf, Germany, 1982. p. 143.

    Google Scholar 

  3. P. Kozakevitch and G. Urbain:J. Iron Steel Inst., 1957, vol. 186, p. 167.

    CAS  Google Scholar 

  4. J.F. Elliott and M. Mounier:Can. Metall. Quart., 1982, vol. 21, p. 415.

    CAS  Google Scholar 

  5. H. Gaye, L.D. Lucas, M. Olette, and P. V. Riboud:Can. Metall. Quart., 1984, vol. 23, p. 179.

    CAS  Google Scholar 

  6. K. Ogino, A. Nishiwaki, and S. Hara:Osaka Yakinkai Kaishi, 1970, vol. 13, p. 110.

    Google Scholar 

  7. T. A. Utigard, D. C. Mo, and J. M. Toguri: Department of Metallurgy, University of Toronto, Canada, unpublished research, 1984.

  8. Y. Rotenberg, L. Boruvka, and A. W. Neumann:J. Colloid Interface Sci., 1983, vol. 93, p. 169.

    Article  CAS  Google Scholar 

  9. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky,and J. Thonstad:Aluminum Electrolysis, 2nd ed., Aluminum-Verlag, Duesseldorf, Germany, 1982, p. 128.

    Google Scholar 

  10. H. Kvande: Dr. Techn. Thesis, The University of Trondheim, Norway, 1979.

  11. J. D. Edwards, C.S. Taylor, L. A. Cosgrove, and A.S. Russell:J. Electrochem. Soc., 1953, vol. 100, p. 508.

    CAS  Google Scholar 

  12. A. Vanja:Allumino, 1950, vol. 19, p. 541.

    Google Scholar 

  13. K. Matiasovsky, J. Jaszova, and M. Malinovsky:Chem. Zvesti, 1963, vol. 17, p. 605.

    CAS  Google Scholar 

  14. R. Fernandez: Dr. Techn. Thesis, Inst. Inorg. Chem., The University of Trondheim, Norway, 1985.

  15. G. A. Abramov, M. M. Vetyukov, I. P. Gupalo, A. A. Kostyukov, and L. N. Lozhkin:Teoreticheskie osnovy elektrometallurgii alyuminiya., Metallurgizdat, Moscow, USSR. 1953.

    Google Scholar 

  16. E.W. Dewing and P. Desclaux:Metall. Trans. B, 1977, vol. 8B. p. 555.

    CAS  Google Scholar 

  17. A. D. Gerasimo and A. I. Belyaev:Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., 1958, vol. 5, p. 50.

    Google Scholar 

  18. E. A. Zhemchuzhina and A.I. Belyaev:Fiz. Kim. Rasplav. Solei Shlakov, Nauk SSSR, Uralsk. Filial, Inst. Elektrokhim., Tr. Vses. Soveshch., Sverdlovsk, 1960, pp. 207–14.

    Google Scholar 

  19. R.J. Brisley and D.J. Fray:Metall. Trans. B, 1984, vol. 15B, p. 135.

    Article  CAS  Google Scholar 

  20. E.W. Dewing:Metall. Trans., 1972, vol. 3, p. 495.

    Article  CAS  Google Scholar 

  21. K. Yoshida and E. W. Dewing:Metall. Trans., 1972, vol. 3, p. 683.

    Article  CAS  Google Scholar 

  22. A. Sterten, K. Hamberg, and I. Maland:Acta Chem. Scand., 1982, vol. A36, p. 329.

    CAS  Google Scholar 

  23. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad:Aluminum Electrolysis, 2nd ed., Aluminum-Verlag, Duesseldorf, Germany, 1982, p. 121.

    Google Scholar 

  24. M. Rolin:Les equilibres chimiques dans les bains d’electrolyse de l ’aluminum, Institut National Sciences Appliquees de Lyon, Villerurbanne, France, 1973.

    Google Scholar 

  25. K. Ogino, S. Hara, T. Miwa, and S. Kimoto:Tetsu-to-Hagané, 1974, vol. 65, p. 2012.

    Google Scholar 

  26. B.C. Allen:Liquid Metals —Chemistry and Physics, Dekker, New York, NY, 1972, p. 161.

    Google Scholar 

  27. K. Ogino, H. Taimatsu, and F. Nakatani:J. Japan Metals, 1982, vol. 46, p. 957.

    CAS  Google Scholar 

  28. A.I. Belyaev:Elektrolit alyuminievxkh vann, Metalurgizdata, Moscow, USSR, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utigard, T., Toguri, J.M. Interfacial tension of aluminum in cryolite melts. Metall Trans B 16, 333–338 (1985). https://doi.org/10.1007/BF02679724

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679724

Keywords

Navigation