Skip to main content
Log in

On the analysis of stochastic divide and conquer algorithms

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper develops general tools for the analysis of stochastic divide and conquer algorithms. We concentrate on the average performance and the distribution of the running time of the algorithm. As a special example we analyse the average performance and the running time distribution of the (2k + 1)-median version of Quicksort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alsmeyer, G.Erneuerungstheorie. Teubner, 1991.

  2. Bertram-Kretzberg, C. Analyse von Quicksort-Varianten. Diplomarbeit, Dortmund, 1991.

  3. Bickel, P.J., and Freedman, D.A. Some asymptotic theory for the bootstrap.Annals of Probability 9, 1196–1217, 1981.

    MATH  MathSciNet  Google Scholar 

  4. Bruhn, V. Eine Methode zur asymptotischen Behandlung einer Klasse von Rekursionsgleichungen mit einer Anwendung in der stochastischen Analyse des Quicksort-Algorithmus. Dissertation, Christian-Albrechts-Universität zu Kiel, 1996.

    MATH  Google Scholar 

  5. Dobrow, R.P., and Fill, J.A. Total path length for random recursive trees. Preprint to appear inCombinatorics, Probability & Computing.

  6. van Emden, M.H. Increasing the efficiency of Quicksort.Communications of the Association or Computing Machinery 13, 563–567, 1970.

    MATH  Google Scholar 

  7. Flajolet, P.Analytic Analysis of Algorithms. Lecture Notes in Computer Science, vol. 623, pp. 186–210, Ed. W. Kuich, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  8. Grübel, R., and Rösler, U. Asymptotic distribution theory for Hoare’s selection algorithm.Advances in Applied Probability 28, 252–269, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hennequin, P. Combinatorial analysis of Quicksort algorithm.Informatique théorique et Applications/Theoretical Informatics and Applications 23, 317–333, 1989.

    MATH  MathSciNet  Google Scholar 

  10. Hoare, C.A.R. Algorithm 64: Quicksort.Communications of the Association for Computing Machinery 4, 321, 1961.

    Google Scholar 

  11. Hoare, C.A.R. Quicksort.Computer Journal 5, 10–15, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  12. Knuth, D.E.The Art of Computer Programming, Vol. 3. Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  13. McDiarmid, C., and Hayward, R. Strong concentration for Quicksort.Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–421, 1992.

  14. Paulsen, V. The moment of FIND.Journal of Applied Probability 34, 1079–1082, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. Rachev, S.T., and Rüschendorf, L. Probability metrics and recursive algorithms.Advances in Applied Probability 27, 770–799, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. Rösler, U. A limit theorem for “Quicksort”.Informatique théorique et Applications/Theoretical Informatics and Applications 25, 85–100, 1991.

    MATH  Google Scholar 

  17. Rösler, U. A fixed point theorem for distributions.Stochastic Processes and their Applications 42, 195–214, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  18. Rösler, U. The view backwards on the Algorithms FIND. Berichtsreihe des Mathematischen Seminars Kiel, Christian-Albrechts-Universität zu Kiel, www.numerik.uni-kiel/reports/ Bericht 99-?, 1998.

  19. Rösler, U. Orlicz norms for measures. Berichtsreihe des Mathematischen Seminars Kiel, Christian-Albrechts-Universität zu Kiel, www.numerik.uni-kiel/reports/ Bericht 99-?, 1998.

  20. Rösler, U., and Rüschendorf, L. The contraction method for recursive algorithms.Algorithmica, this issue.

  21. Roura, S. An improved Master Theorem for divide-and-conquer recurrences.Proceedings of the 24th International Colloquium (ICALP-97), pp. 449–459, 1997.

  22. Sedgewick, R. The analysis of Quicksort programs.Acta Informatica 7, 327–355, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  23. Sedgewick, R.Quicksort. Stanford Computer Science Report STAN-CS-75-492, Ph.D. thesis: 1975. Also published by Garland, New York. 1980.

  24. Sedgewick, R.Algorithms, Second edition. Addison-Wesley, Reading, MA, 1988.

    Google Scholar 

  25. Sedgewick, R., and Flajolet, P.An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Prodinger and W. Szpankowski.

Online publication October 13, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösler, U. On the analysis of stochastic divide and conquer algorithms. Algorithmica 29, 238–261 (2001). https://doi.org/10.1007/BF02679621

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679621

Key Words

Navigation