Abstract
This paper develops general tools for the analysis of stochastic divide and conquer algorithms. We concentrate on the average performance and the distribution of the running time of the algorithm. As a special example we analyse the average performance and the running time distribution of the (2k + 1)-median version of Quicksort.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alsmeyer, G.Erneuerungstheorie. Teubner, 1991.
Bertram-Kretzberg, C. Analyse von Quicksort-Varianten. Diplomarbeit, Dortmund, 1991.
Bickel, P.J., and Freedman, D.A. Some asymptotic theory for the bootstrap.Annals of Probability 9, 1196–1217, 1981.
Bruhn, V. Eine Methode zur asymptotischen Behandlung einer Klasse von Rekursionsgleichungen mit einer Anwendung in der stochastischen Analyse des Quicksort-Algorithmus. Dissertation, Christian-Albrechts-Universität zu Kiel, 1996.
Dobrow, R.P., and Fill, J.A. Total path length for random recursive trees. Preprint to appear inCombinatorics, Probability & Computing.
van Emden, M.H. Increasing the efficiency of Quicksort.Communications of the Association or Computing Machinery 13, 563–567, 1970.
Flajolet, P.Analytic Analysis of Algorithms. Lecture Notes in Computer Science, vol. 623, pp. 186–210, Ed. W. Kuich, Springer-Verlag, Berlin, 1992.
Grübel, R., and Rösler, U. Asymptotic distribution theory for Hoare’s selection algorithm.Advances in Applied Probability 28, 252–269, 1996.
Hennequin, P. Combinatorial analysis of Quicksort algorithm.Informatique théorique et Applications/Theoretical Informatics and Applications 23, 317–333, 1989.
Hoare, C.A.R. Algorithm 64: Quicksort.Communications of the Association for Computing Machinery 4, 321, 1961.
Hoare, C.A.R. Quicksort.Computer Journal 5, 10–15, 1962.
Knuth, D.E.The Art of Computer Programming, Vol. 3. Addison-Wesley, Reading, MA, 1973.
McDiarmid, C., and Hayward, R. Strong concentration for Quicksort.Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–421, 1992.
Paulsen, V. The moment of FIND.Journal of Applied Probability 34, 1079–1082, 1997.
Rachev, S.T., and Rüschendorf, L. Probability metrics and recursive algorithms.Advances in Applied Probability 27, 770–799, 1995.
Rösler, U. A limit theorem for “Quicksort”.Informatique théorique et Applications/Theoretical Informatics and Applications 25, 85–100, 1991.
Rösler, U. A fixed point theorem for distributions.Stochastic Processes and their Applications 42, 195–214, 1992.
Rösler, U. The view backwards on the Algorithms FIND. Berichtsreihe des Mathematischen Seminars Kiel, Christian-Albrechts-Universität zu Kiel, www.numerik.uni-kiel/reports/ Bericht 99-?, 1998.
Rösler, U. Orlicz norms for measures. Berichtsreihe des Mathematischen Seminars Kiel, Christian-Albrechts-Universität zu Kiel, www.numerik.uni-kiel/reports/ Bericht 99-?, 1998.
Rösler, U., and Rüschendorf, L. The contraction method for recursive algorithms.Algorithmica, this issue.
Roura, S. An improved Master Theorem for divide-and-conquer recurrences.Proceedings of the 24th International Colloquium (ICALP-97), pp. 449–459, 1997.
Sedgewick, R. The analysis of Quicksort programs.Acta Informatica 7, 327–355, 1977.
Sedgewick, R.Quicksort. Stanford Computer Science Report STAN-CS-75-492, Ph.D. thesis: 1975. Also published by Garland, New York. 1980.
Sedgewick, R.Algorithms, Second edition. Addison-Wesley, Reading, MA, 1988.
Sedgewick, R., and Flajolet, P.An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.
Author information
Authors and Affiliations
Additional information
Communicated by H. Prodinger and W. Szpankowski.
Online publication October 13, 2000.
Rights and permissions
About this article
Cite this article
Rösler, U. On the analysis of stochastic divide and conquer algorithms. Algorithmica 29, 238–261 (2001). https://doi.org/10.1007/BF02679621
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02679621