Advertisement

Theory of Computing Systems

, Volume 30, Issue 3, pp 231–247 | Cite as

The complexity of deterministic PRAM simulation on distributed memory machines

  • A. Pietracaprina
  • G. Pucci
Article

Abstract

In this paper we present lower and upper bounds for the deterministic simulation of a Parallel Random Access Machine (PRAM) withn processors andm variables on a Distributed Memory Machine (DMM) withpn processors. The bounds are expressed as a function of the redundancyr of the scheme (i.e., the number of copies used to represent each PRAM variable in the DMM), and become tight for anym polynomial inn andr=Θ(1).

Keywords

Shared Memory Memory Module Simulation Scheme Access Protocol Read Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Alt, T. Hagerup, K. Mehlhorn, and F. P. Preparata. Deterministic simulation of idealized parallel computers on more realistic ones.SIAM Journal on Computing, 16(5):808–835, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    G. Baudet and D. Stevenson. Optimal sorting algorithms for parallel computers.IEEE Transactions on Computers, 27(1):84–87, January 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared memory simulations with triple-logarithmic delay.Proceedings of the 3rd European Symposium on Algorithms, Corfu, September 1995. LNCS, volume 979, pages 46–59, 1995.Google Scholar
  4. [4]
    K.T. Herley. Representing shared data on distributed-memory parallel computers.Mathematical Systems Theory, 29:111–156, 1996.MathSciNetzbMATHGoogle Scholar
  5. [5]
    K. Herley and G. Bilardi. Deterministic simulations of PRAMs on bounded-degree networks.SIAM Journal on Computing, 23(2):276–292, April 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    K. Herley, A. Pietracaprina, and G. Pucci. Implementing shared memory on multi-dimensional meshes and on the fat-tree.Proceedings of the 3rd European Symposium on Algorithms, Corfu, September 1995. LNCS, volume 979, pages 60–74, 1995.Google Scholar
  7. [7]
    A.R. Karlin and E. Upfal. Parallel hashing: An efficient implementation of shared memory.Journal of the ACM, 35(4):876–892, October 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    F. T. Leighton. Tight bounds on the complexity of parallel sorting.IEEE Transactions on Computers, 34(4):344–354, April 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    F. Luccio, A. Pietracaprina, and G. Pucci. A new scheme for the deterministic simulation of PRAMs in VLSI.Algorithmica, 5(4):529–544, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel machines with restricted granularity of parallel memories.Acta Informatica, 21:339–374, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    D. Peleg and E. Upfal. The token distribution problem.SIAM Journal on Computing, 18(2):229–243, April 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    A. Pietracaprina and F. P. Preparata. AnO(√n)-worst-case-time solution to the granularity problem.Proceedings of the 10th Symposium on Theoretical Aspects of Computer Science, Würzburg, February 1993. LNCS, volume 665, pages 110–119.Google Scholar
  13. [13]
    A. Pietracaprina and F. P. Preparata. A practical constructive scheme for deterministic shared-memory access.Proceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures, Velen, July 1993, pages 100–109.Google Scholar
  14. [14]
    A. Pietracaprina and G. Pucci. Tight bounds on deterministic PRAM emulations with constant redundancy.Proceedings of the 2nd European Symposium on Algorithms, Papendal, September 1994. LNCS, volume 855, pages 391–400.Google Scholar
  15. [15]
    A. Pietracaprina and G. Pucci. Improved deterministic PRAM simulation on the mesh.Proceedings of the 22nd International Colloquium on Automata, Languages and Programming, Szeged, July 1995. LNCS, volume 944, pages 372–383.Google Scholar
  16. [16]
    A. Pietracaprina, G. Pucci, and J. Sibeyn. Constructive deterministic PRAM simulation on a mesh-connected computer.Proceedings of the 6th ACM Symposium on Parallel Algorithms and Architectures, Cape May, NJ, June 1994, pages 248–256.Google Scholar
  17. [17]
    E. Upfal and A. Wigderson. How to share memory in a distributed system.Journal of the ACM, 34(1):116–127, 1987.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1997

Authors and Affiliations

  • A. Pietracaprina
    • 1
  • G. Pucci
    • 2
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di Elettronica e InformaticaUniversità di PadovaPadovaItaly

Personalised recommendations