Skip to main content

Advertisement

Log in

Hodgkin’s disease: A disorder of dysregulated cellular cross-talk

  • Published:
Biotherapy

Abstract

Hodgkin’s disease (HD) is a peculiar type of human malignant lymphoma characterized by a very low frequency of tumor cells, the so called Hodgkin and Reed-Sternberg (H-RS) cells, embedded in a hyperplastic background of non-neoplastic (reactive) cells recruited and activated by H-RS cells-derived cytokines. H-RS cells can be functionally regarded as antigen-presenting cells (APC) able to elicit an intense, but anergic and ineffective, T-cell mediated immune response along with a hyperplastic inflammatory reaction which involves several cell types including T- and B-cells, neutrophils, eosinophils, plasma cells, fibroblasts and stromal cells. In tissues involved by HD, malignant H-RS cells and their reactive neighboring cells are able to cross-talk via a complex network of cytokine- and cell contact-dependent interactions. As a result of such interactions, mediated by specific surface receptors and adhesion molecules on both tumor and non-neoplastic cells, H-RS cells may receive several proliferative and anti-apoptotic signals favoring the cellular expansion and tumor cell survival in HD. The ineffective T-cell immune response elicited by the abnormal APC function of H-RS cells may further contribute to the biologic and clinical progression of HD. Innovative therapeutic strategies aimed at blocking the pathways of dysregulated cellular cross-talk among H-RS cells and bystander reactive cell populations might be beneficial in the treatment of HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

antigen presenting cell

CD:

cluster of differentiation

EBV:

Epstein-Barr virus

EMA:

epithelial membrane antigen

GM-CSF:

granulocyte-macrophage colony-stimulating factor

HD:

Hodgkin’s disease

HIV:

human immunodeficiency virus

H-RS:

Hodgkin and Reed-Sternberg cell

HTLV:

human T cell leukemia virus

ICAM-1:

intercellular adhesion molecule-1

IFN-γ:

interferon-γ

Ig:

immunoglobulin

IL:

interleukin

L:

ligand

LD:

lymphocyte depletion

LFA-1:

leukocyte function antigen-1

LIF:

leukemia inhibitory factor

LP:

lymphocyte predominance

LT-α:

lymphotoxin-α

MC:

mixed cellularity

M-CSF:

macrophage colony-stimulating factor

MHC:

major histocompatibility complex

NGF:

nerve growth factor

NHL:

non-Hodgkin lymphoma

NS:

nodular sclerosis

PCR:

polymerase chain reaction

R:

receptor

RANTES:

regulated upon activation normal T cell, expressed and secreted

SCF:

stem cell factor

TCR:

T cell receptor

TGF-β:

transforming growth factor-β

TNF:

tumor necrosis factor

References

  1. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, Delsol G, De Wolf Peeters C, Falini B, Gatter KC. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study group. Blood 1994; 84: 1361–1392.

    PubMed  CAS  Google Scholar 

  2. Kaplan HS. Hodgkin’s Disease. 2nd ed. Cambridge, MA: Harvard University Press, 1980.

    Google Scholar 

  3. Banks PM. The pathology of Hodgkin’s disease. Semin Oncol 1990; 17: 683–689.

    PubMed  CAS  Google Scholar 

  4. Butler JJ. The histologic diagnosis of Hodgkin’s disease. Sem Diagn Pathol 1992; 9: 252–256.

    CAS  Google Scholar 

  5. Kadin ME. Pathology of Hodgkin’s disease. Curr Opinion Oncol 1994; 6: 456–463.

    Article  CAS  Google Scholar 

  6. Carbone A, Manconi R, Poletti A, Sulfaro S, Menin A, Tirelli U, Betta PG, Volpe R. Reed-Sternberg cells and their cell microenvironment in Hodgkin’s disease with reference to macrophage-histiocytes and interdigitating reticulum cells. Cancer 1987; 60: 2662–6268.

    Article  PubMed  CAS  Google Scholar 

  7. Wright DH. Out of the Hodgkin’s maze? J Pathol 1995; 177: 331–333.

    Article  PubMed  CAS  Google Scholar 

  8. Haluska FG, Brufsky AM, Cannellos GP. The cellular biology of Reed-Sternberg cell. Blood 1995; 84: 1005–1019.

    Google Scholar 

  9. Delabie J, Tierens A, Wu G, Weisenburger DD, Chan WC. Lymphocyte predominance Hodgkin’s disease: lineage and clonality determination using a single-cell assay. Blood 1994; 84:3291–3298.

    PubMed  CAS  Google Scholar 

  10. Mason D., Banks PM, Chan J, Cleary ML, Delsol G, de Wolf Peeters C, Falini B, Gatter K, Grogan TM, Harris NL. Nodular lymphocyte predominance Hodgkin’s disease. A distinct clinicopathological entity. Am J Surg Pathol 1994; 18: 526–530.

    Article  PubMed  CAS  Google Scholar 

  11. Poppema S. The nature of the lymphocytes surrounding Reed-Sternberg cells in nodular lymphocyte predominance and in other types of Hodgkin’s disease. Am J Pathol 1989; 135: 351–357.

    PubMed  CAS  Google Scholar 

  12. Poppema S, De Jong B, Atmosoerodjo J, Idenburg V, Visser L, De Ley L. Morphologic, immunologic, enzymehistochemical and chromosomal analysis of a cell line derived from Hodgkin’s disease. Evidence for a B-cell origin of Sternberg-Reed cells. Cancer 1985; 55: 683–690.

    Article  PubMed  CAS  Google Scholar 

  13. Poppema, S. The biology of Hodgkin’s disease. Ann Oncol 1992; 3 (Suppl. 4): 5–8.

    PubMed  Google Scholar 

  14. Schmid C, Pan L, Diss T, Isaacson PG. Expression of B-cell antigens by Hodgkin’s disease and Reed-Sternberg cells. Am J Pathol 1991; 139: 701–707.

    PubMed  CAS  Google Scholar 

  15. Isaacson PG, Asthon Key M. Phenotype of Hodgkin and Reed-Sternberg cells. Lancet 1996; 347: 481.

    Article  PubMed  CAS  Google Scholar 

  16. Carbone A, Gloghini A, Gattei V, Degan M, Improta S, Aldinucci D, Canzonieri V, Perin T, Volpe R, Gaidano G, Zagonel V, Pinto A. Reed-Sternberg cells of classical Hodgkin’s disease react with the plasma cell-specific monoclonal antibody B-B4 and express human syndecan-1. Blood 1997; 89: 3787–3794.

    PubMed  CAS  Google Scholar 

  17. Kadin ME, Muramoto L, Said J. Expression of T-cell antigens on Reed-Sternberg cells in a subset of patients with nodular sclerosing and mixed cellularity Hodgkin’s disease. Am J Pathol 1988; 130: 345–353.

    PubMed  CAS  Google Scholar 

  18. Dallenbach FE, Stein H. Expression of T-cell receptor beta chain in Reed-Sternberg cells. Lancet 1989; ii: 828–830.

    Article  Google Scholar 

  19. Drexler, HG. Recent results on the biology of Hodgkin and Reed-Sternberg cells. I. Biopsy material. Leuk Lymph 1992; 8: 283–303.

    CAS  Google Scholar 

  20. Inghirami G, Macri, L, Rosati S, Zhu BY, Yee HT, Knowles DM. The Reed-Sternberg cells of Hodgkin disease are clonal Proc Natl Acad Sci USA 1994; 91: 9842–9846.

    Article  PubMed  CAS  Google Scholar 

  21. Tamaru J-i, Hummel M, Zemlin M, Kalvelage B, Stein H. Hodgkin’s disease with B-cell phenotype oftes shows a VDJ rearrangement and somatic mutations in the VH genes. Blood 1994; 84: 708–715.

    PubMed  CAS  Google Scholar 

  22. Hummel M, Ziemann K, Lammert H, Pileri S, Sabattini E, Stein H. Hodgkin’s disease with monoclonal and polyclonal populations of Reed-Sternberg cells. N. Engl J Med 1995; 333: 901–906.

    Article  PubMed  CAS  Google Scholar 

  23. Hummel M, Marafioti T, Stein H. Immunoglobulin V genes in Reed-Sternberg cells. N Engl J Med 1996; 334: 405–406.

    Google Scholar 

  24. Küppers M, Loftin U, von Bonin F, von Bonin F, Gause A, Pfreundschuh M, Daus H, Trumper L. (1996a) Single cell PCR for the analysis of Hodgkin’s disease: four years later. Ann Oncol 1996; 7 (Suppl 4): 35–39.

    Google Scholar 

  25. Delabie J, Tierens A, Gavriil T, Wu G, Weisenburger DD, Chan WC Phenotype, genotype and clonality of Reed-Sternberg cells in nodular sclerosis Hodgkin’s disease: results of a single-cell study. Br J Haematol 1996; 94: 198–205.

    Article  PubMed  CAS  Google Scholar 

  26. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R, Hansmann ML. Hodgkin’s disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA 1994; 91: 10962–10966.

    Article  PubMed  Google Scholar 

  27. Kanzler H, Küppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996; 184: 1495–1505.

    Article  PubMed  CAS  Google Scholar 

  28. Kanzler H, Hansmaan ML, Kapp U, Wolf J, Diehl V, Rajewsky K, Küppers R. Molecular single cell analysis demonstrates the derivation of a peripheral blood-derived cell line (L1236) from the Hodgkin/Reed-Sternberg cells of a Hodgkin’s lymphoma patient. Blood 1996; 87: 3429–3436.

    PubMed  CAS  Google Scholar 

  29. Küppers R, Kanzler H, Hansmann ML, Rajewsky K. Single cell analysis of Hodgkin/Reed-Sternberg cells. Ann Oncol 1996; 7 (Suppl 4): 27–30.

    PubMed  Google Scholar 

  30. Küppers R, Kanzler H, Hansmann ML, Rajewsky K. Immunoglobulin V genes in Reed-Sternberg cells. N Engl J Med 1996; 334: 404.

    Article  PubMed  Google Scholar 

  31. Rajewsky K, Kanzler H, Hansmann ML, KÜppers R. Normal and malignant B-cell development with special reference to Hodgkin’s disease. Ann Oncol 1997; 8 (Suppl. 2): 79–81.

    Article  PubMed  Google Scholar 

  32. Daus H, Trumper L, Roth J, von Bonin F, Moller P, Gause A, Pfreundschuh M. Hodgkin and Reed-Sternberg cells do not carry T-cell receptor gamma gene rearrangements: Evidence from single-cell polymerase chain reaction examination. Blood 1995; 85: 1590–1595.

    PubMed  CAS  Google Scholar 

  33. Pinkus GS, Said JW. Hodgkin’s disease, lymphocyte predominance type, nodular-further evidence for a B-cell derivation. L&H variants of Reed-Sternberg cells express L26, a pan B cell marker. Am J Pathol 1988; 133: 211–217.

    PubMed  CAS  Google Scholar 

  34. Poppema S. Lymphocyte predominance Hodgkin’s disease. Sem Diagn Pathol 1992; 9: 257–264.

    CAS  Google Scholar 

  35. Gruss HJ, Pinto A, Duyster J, Poppema S, Herrmann F. Hodgkin’s disease: a tumor with disturbed immunological pathways. Immunol Today 1997; 18: 156–163.

    Article  PubMed  CAS  Google Scholar 

  36. Dürkop H, Latza U, Hummel M, Eithelbach F, Seed B, Stein H. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 1992; 68: 421–427.

    Article  PubMed  Google Scholar 

  37. Smith CA, Gruss HJ, Davis T, Anderson D, Anderson D, Farrah T, Baker E, Sutherland GR, Brannan CI, Copeland NG, Jenkins NA, Grabstein KH, Gliniak B, McAlister IB, Fanslow W, Alderson M, Falk B, Gimpel S, Gillis S, Din SW, Goodwin RG, Armitage RJ. CD30 antigen, a marker for Hodgkin’s lymphoma is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 1993; 73: 1349–60.

    Article  PubMed  CAS  Google Scholar 

  38. Gruss HJ, Hirschstein D, Wright B, Ulrich D, Caligiuri MA, Strockbine L, Armitage RJ, Dower SK. Expression and function of CD40 on Hodgkin and Reed-Sternberg cells and the possible relevance for Hodgkin’s disease. Blood 1994; 84: 2305–2314.

    PubMed  CAS  Google Scholar 

  39. O’Grady JT, Stewart S, Lowrey J, Howie SE, Krajewski AS. CD40 expression in Hodgkin’s disease. Am J Pathol 1994; 144: 21–26.

    PubMed  CAS  Google Scholar 

  40. Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De Paoli P, Zagonel V, Pinto A. Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines. Blood 1995; 85: 780–789.

    PubMed  CAS  Google Scholar 

  41. Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, Martelli MF, Stein H. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 1995; 85: 1–14.

    PubMed  CAS  Google Scholar 

  42. Bancherau J, Bazan F, Briere F, Galizzi JP, van Kooten C, Liu YJ, Rousset F, Sealand S. The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12: 881–922.

    Article  Google Scholar 

  43. Smith GA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994; 76: 959–962.

    Article  PubMed  CAS  Google Scholar 

  44. Gruss HJ, Dower SK. TNF ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 1995; 85: 3378–3344.

    PubMed  CAS  Google Scholar 

  45. Gruss HJ, Dower SK. The TNF ligand superfamily and its relevance for human diseases. Cytok Mol Ther 1995; 1: 75–76.

    CAS  Google Scholar 

  46. Armitage RJ. Tumor necrosis factor receptor superfamily members and their ligands. Curr Opin Immunol 1994; 6: 407–413.

    Article  PubMed  CAS  Google Scholar 

  47. Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994; 83: 2045–2056.

    PubMed  CAS  Google Scholar 

  48. Carbone A, Gloghini A, Gruss HJ, Pinto A. CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin’s disease. Am J Pathol 1995; 147: 912–922.

    PubMed  CAS  Google Scholar 

  49. Gruss HJ, Pinto A, Gloghini A, Wright B, Boiani N, Aldinucci D, Gattei V, Zagonel V, Smith GA, Kadin ME, von Schilling C, Goodwin RG, Herrmann F, Carbone A. CD30 ligand expression in normal, reactive and Hodgkin’s disease-involved lymph nodes. Am J Pathol 1996; 149: 469–481.

    PubMed  CAS  Google Scholar 

  50. Gruss HJ, Duyster J, Herrmann F. Structural and biological features of the TNF receptor and TNF ligand superfamilies: interactive signals in the pathobiology of Hodgkin’s disease. Ann Oncol 1996; 7(Suppl. 4): 19–26.

    PubMed  Google Scholar 

  51. Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Improta S, Juzbasic S, Todesco M, Perin V, Gattei V, Herrmann F, Gruss HJ, Carbone A. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin’s disease cell line. Blood 1996; 88: 3299–3305.

    PubMed  CAS  Google Scholar 

  52. Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Perin V, Todesco M, De Iuliis A, Improta S, Sacco C, Gattei V, Gruss HJ, Carbone A. The role of eosinophils in the pathobiology of Hodgkin’s disease. Ann Oncol 1997; 8 (Suppl. 2): 89–96.

    Article  PubMed  Google Scholar 

  53. Gattei V, Degan M, Gloghini A, De Iuliis A, Improta S, Rossi FM, Aldinucci D, Perin V, Serraino D, Babare R, Zagonel V, Gruss HJ, Carbone A, Pinto A. CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin. Blood 1997; 89: 2048–2059.

    PubMed  CAS  Google Scholar 

  54. Pinkus GS, Thomas P, Said JW. Leu-M1 — a marker for Reed-Sternberg cells in Hodgkin’s disease. An immunoperoxidase study of paraffin-embedded tissues. Am J Pathol 1985; 119: 244–252.

    PubMed  CAS  Google Scholar 

  55. Chittal SM, Caverivière P, Schwarting R, Gerdes J, Al Saati T, Rigal-Huguet F, Stein H, Delsol G. Monoclonal antibodies in the diagnosis of Hodgkin’s disease: the search for a rational panel. Am J Surg Pathol 1988; 12: 9–13.

    Article  PubMed  CAS  Google Scholar 

  56. Bilbe G, Delabie J, Bruggen J, Richener H, Asselbergs FA, Cerletti N, Sorg C, Odink K, Tarcsay L, Wiesendanger W. Restin: A novel intermediate filament-associated protein highly expressed in the Reed-Sternberg cells of Hodgkin’s disease. EMBO J 1992; 11: 2103–2113.

    PubMed  CAS  Google Scholar 

  57. Delabie J, Shipman R, Bruggen J, De Strooper B, van Leuven F, Tarcsay L, Cerletti N, Odink K, Diehl V, Bilbe G. Expression of the novel intermediate filament-associated protein restin in Hodgkin’s disease and anaplastic large-cell lymphoma. Blood 1992; 80: 2891–2896.

    PubMed  CAS  Google Scholar 

  58. Baker SJ, Reddy EP. Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 1996; 12: 1–12.

    PubMed  CAS  Google Scholar 

  59. Gruss HJ, Hermann F, Drexler HG. Hodgkin’s disease: a cytokine producing tumor. Crit Rev Oncog 1994; 5: 23–88.

    Google Scholar 

  60. Gruss HJ, Ulrich D, Braddy S, Armitage RJ, Dower SK. Recombinant CD30 ligand and CD40 ligand share common biological activities on Hodgkin and Reed-Sternberg cells. Eur J Immunol 1995; 25: 2083–2089.

    Article  PubMed  CAS  Google Scholar 

  61. Yang YC. Human Interleukin-9: a new cytokine in hematopoiesis. Leuk Lymph 1992; 8: 441–447.

    CAS  Google Scholar 

  62. Engelmann H, Novick D, Wallach D. Two tumor necrosis factor binding protein purified from human urine. Evidence for immunological cross reactivity with cell surface tumor necrosis factor receptors. J Biol Chem 1990; 265: 1531–1536.

    PubMed  CAS  Google Scholar 

  63. Hintzen RQ, de Jong R, Hack CE, Chamuleau M, de Vries EFR, Ten Berge IJM, Borst J, van Lier RAW. A soluble form of the human T cell differentiation antigen CD27 is released after triggering of the TCR/CD3 complex. J Immunol 1991; 147: 29–35.

    PubMed  CAS  Google Scholar 

  64. Josimovic-Alasevic O, Dürkop H, Schwarting R, Backe E, Stein H, Diamantstein T. Ki-1 (CD30) antigen is released by Ki-1-positive tumor cells in vitro and in vivo. I. Partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture supernatants and in serum by an enzyme-linked immunosorbent assay. Eur J Immunol 1989; 19: 157–162.

    Article  PubMed  CAS  Google Scholar 

  65. Ellis TM, Simms PE, Slivink DJ, Jack HM, Fisher RI. CD30 is a signal-transducing molecule that defines a subset of human activated CD45R0+ T cells. J Immunol 1993; 151: 2380–2423.

    PubMed  CAS  Google Scholar 

  66. Pizzolo G, Vinante F, Morosato L, Nadali G, Chilosi M, Gandini G, Sinicco A, Raiteri R, Semenzato G, Stein H. High serum level of the soluble form of CD30 molecule in the early phase of HIV-1 infection as an independent predictor of progression to AIDS. AIDS 1994; 8: 741–746.

    Article  PubMed  CAS  Google Scholar 

  67. Del Prete GF, Maggi E, Pizzolo G, Romagnani S. CD30, Th2 cytokines and HIV infection: a complex and fascinating link. Immunol Today 1995; 16: 76–80.

    Article  PubMed  Google Scholar 

  68. Gause A, Pohl C, Tscheirsch A, Da Costa L, Jung W, Diehl V, Hasenclever D, Pfreundschuh M. Clinical significance of soluble CD30 antigen in the sera of patients with with untreated Hodgkin’s disease. Blood 1991; 77: 1983–1988.

    PubMed  CAS  Google Scholar 

  69. Nadali G, Vinante F, Ambrosetti A, Todeschini G, Veneri D, Zanotti R, Meneghini V, Ricetti MM, Benedetti F, Vassanelli A, Perona G, Chilosi M, Menestrina F, Fiacchini M, Stein H, Pizzolo G. Serum levels of soluble CD30 are elevated in the majority of untreated patients with Hodgkin’s disease and correlate with clinical features and prognosis. J Clin Oncol 1994; 12: 793–779.

    PubMed  CAS  Google Scholar 

  70. Gruss HJ, Dölken G, Brach MA, Mertelsmann R, Herrmann F. Serum levels of circulating ICAM-1 are increased in Hodgkin’s disease. Leukemia 1993; 7: 1245–1249.

    PubMed  CAS  Google Scholar 

  71. Gruss HJ, Dölken G, Brach MA, Mertelsmann R, Herrmann F. The significance of serum levels of soluble 60kDa receptors for tumor necrosis factor in patients with Hodgkin’s disease. Leukemia 1993; 7: 1339–1343.

    PubMed  CAS  Google Scholar 

  72. Gause A, Jung W, Keymis S, Schobert I, Scholz R, Schmits R, Diehl V, Pohl C, Hasenclever D, Pfreundschuh M. The clinical significance of cytokines and soluble forms of membrane-derived activation antigens in the serum of patients with Hodgkin’s disease. Leuk Lymph 1992; 7: 439–447.

    CAS  Google Scholar 

  73. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263: 1759–1762.

    Article  PubMed  CAS  Google Scholar 

  74. Merz H, Fliedner A, Orscheschek K, Binder Th, Sebald W, Muller-Hermelink HK, Feller AC. Cytokine expression in T-cell lymphomas and Hodgkin’s disease. Am J Pathol 1991; 139: 1173–1180.

    PubMed  CAS  Google Scholar 

  75. Gruss HJ, Brach MA, Drexler HG, Bross KJ, Herrmann F. Interleukin-9 is expressed by primary and cultured Hodgkin and Reed-Sternberg cells. Cancer Res 1992; 52: 1026–1031.

    PubMed  CAS  Google Scholar 

  76. Pinto A, Gloghini A, Gattei V, Aldinucci D, Zagonel V, Carbone A. Expression of the c-kit receptor in human lymphomas is restricted to Hodgkin’s disease and CD30+ anaplastic large cell lymphomas. Blood 1994; 83: 785–792.

    PubMed  CAS  Google Scholar 

  77. Mertz H, Houssiau FA, Orsheschek K, Renauld JC, Fliedner A, Herin M, Noel H, Kadin M, Mueller-Hermelink HK, Van Snick J, Feller AC. Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin’s disease and large cell anaplastic lymphoma. Blood 1991; 78: 1311–1317.

    Google Scholar 

  78. Stuart AE, Willimas AR, Habeshaw JA. Rosetting and other reactions of the Reed-Sternberg cell. J Pathol 1977; 122: 81–90.

    Article  PubMed  CAS  Google Scholar 

  79. Sanders ME, Makgoba MW, Sussman EH, Luce GE, Cossma J, Shaw S. Molecular pathways of adhesion in spontaneous rosetting of T-lymphocytes to the Hodgkin’s cell line L428. Cancer Res 1988; 48: 37–40.

    PubMed  CAS  Google Scholar 

  80. Delabie J, Chan WC, Weisenburger DD, De Wolf Peeters C. The antigen-presenting cell function of Reed-Sternberg cells. Leuk Lymph 1995; 18: 35–40.

    CAS  Google Scholar 

  81. Alzona M, Jäck HM, Fisher R, Ellis TM. CD30 defines a subset of activated human T cells that produce IFN-y and IL-5 and exhibit enhanced B cell helper activity. J Immunol 1994; 153: 2861–2867.

    PubMed  CAS  Google Scholar 

  82. Del Prete GF, De Carli M, Almerigogna F, Daniel CK, D’Elios MM, Zancuoghi G, Pizzolo G, Romagnani S. Preferential expression of CD30 by human CD4+ T-cells producing Th2-type cytokines. FASEB J 1995; 9: 81–86.

    PubMed  Google Scholar 

  83. Renauld JC, Goethals A, Haussiau F, Merz H, van Roost E, van Snick J. Human P40/IL-9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol 1990; 144: 4235–4241.

    PubMed  CAS  Google Scholar 

  84. Samoszuk MK, Nansen L. Detection of interleukin-5 messenger RNA in Reed-Sternberg cells of Hodgkin’s disease with eosinophilia. Blood 1990; 75: 13–16.

    PubMed  CAS  Google Scholar 

  85. Samoszuk M. IgE in Reed-Sternberg cells of Hodgkin’s disease with eosinophilia. Blood 1992; 76: 1518–1522.

    Google Scholar 

  86. Mosmann TR, Sad S. The expanding universe o T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–146.

    Article  PubMed  CAS  Google Scholar 

  87. Gauchat JF, Henchoz S, Fattah D, Mazzei G, Aubry JP, Jomotte T, Dash L, Page K, Solari R, Aldebert D, Capron M, Dahinden C, Bonnefoy JY. CD40 ligand is functionally expressed on human eosinophils. Eur J Immunol 1995; 25: 863–865.

    Article  PubMed  CAS  Google Scholar 

  88. Sanderson CJ. Interleukin-5, eosinophils and disease. Blood 1992; 79: 3101–3109.

    PubMed  CAS  Google Scholar 

  89. Wardlaw, AJ, Moqbel R, Kay AB. Eosinophils: biology and role in disease. Adv Immunol 1995; 60: 151–266.

    Article  PubMed  CAS  Google Scholar 

  90. Schultze J, Nadler LM, Gribben JG. B7-mediated costimulation and the immune response. Blood Rev 1996; 10: 111–127.

    Article  PubMed  CAS  Google Scholar 

  91. Croft M, Dubey C. Accessory molecule and costimulation requirements for CD4 T cell response. Crit Rev Immunol 1997; 17: 89–118.

    PubMed  CAS  Google Scholar 

  92. Cayabyab M, Phillips JH, Lanier LL. CD40 preferentially costimulates activation of CD4+ T lymphocytes. J Immunol 1994; 152: 1523–1531.

    PubMed  CAS  Google Scholar 

  93. Fisher RI, Bostick-Bruton F, Sauder DN, Scala G, Diehl V. Neoplastic cells obtained from Hodgkin’s disease are potent stimulators of human primary mixed lymphocyte cultures. J Immunol 1983; 130: 2666–2670.

    PubMed  CAS  Google Scholar 

  94. Fisher RI, Cossman J, Diehl V, Volkman DJ. Antigen presentation by Hodgkin’s disease cells. J Immunol 1985; 135: 3568–3571.

    PubMed  CAS  Google Scholar 

  95. Maggi E, Parronchi P, Macchia D, Bellesi G, Romagnani S. High numbers of CD4+ T cells showing abnormal recognition of DR antigens in lymphoid organs involved by Hodgkin’s disease. Blood 1989; 71: 1503–1506.

    Google Scholar 

  96. Romagnani S, Rossi Ferrini PL, Ricci M. The immune derangement in Hodgkin’s disease. Sem Hematol 1985; 22: 41–55.

    CAS  Google Scholar 

  97. Maggi E, Parronchi P, Macchia D, Piccinni MP, Simonelli C, Romagnani S. Role of T cells in the pathogenesis of Hodgkin’s disease. Int Rev Exp Pathol. 1992; 33: 141–164.

    PubMed  CAS  Google Scholar 

  98. Schmid C, Sweeney E, Isaacson PG. Proliferating cell nuclear antigen (PCNA) expression in Hodgkin’s disease. J Pathol 1992; 168: 1–6.

    Article  PubMed  CAS  Google Scholar 

  99. Poppema S, Visser L. Immunophenotype and functional characteristics of T cells in Hodgkin’s disease. Blood 1995; 86 (Suppl. 1, 339a): 1345.

    Google Scholar 

  100. Fox DA, Hussey RE, Fitzgerald KA, Acuto O, Poole C, Palley L, Daley JF, Schlossman SF, Reinherz EL. Tal, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody. J Immunol 1984; 133: 1250–1256.

    PubMed  CAS  Google Scholar 

  101. Dang NH, Torimoto Y, Schlossman SF, Morimoto C. Human CD4 helper T cell activation: functional involvement of two distinct collagen receptors, 1F7 and VLA integrin family. J Exp Med 1990; 172: 649–652.

    Article  PubMed  CAS  Google Scholar 

  102. Fleischer B. CD26: a surface protease involved in T-cell activation. Immunol Today 1994; 15: 180–184.

    Article  PubMed  CAS  Google Scholar 

  103. Romagnani S, Maggi E, Parronchi P, Macchia D, Del Prete GF, Rossi Ferrini PL, Ricci M, Moretta L. Clonal analysis of T lymphocytes in spleens from patients with Hodgkin’s disease. Frequent occurrence of unusual T4-positive cells which coexpress cytolitic activity and production of interleukin-2. Int J Cancer 1986; 37: 343–349.

    Article  PubMed  CAS  Google Scholar 

  104. Poppema S, Visser L. Absence of HLA class I expression by Reed-Sternberg cells. Am J Pathol 1994; 145: 37–41.

    PubMed  CAS  Google Scholar 

  105. Valagussa P, Santoro A, Fossati-Belloni F, Banti A, Bonadonna G. Second acute leukemia and other malignancies following treatment for Hodgkin’s disease. J Clin Oncol 1986; 4: 830–837.

    PubMed  CAS  Google Scholar 

  106. Tazzari PL, Bolognesi A, De Totero D, Falini B, Lemoli R, Soria M, Pileri S, Gobbi M, Stein H, Flenghi L, Martelli MF, Stirpe F. Ber-H2 (anti CD30)-saporin immunotoxin: a new tool for treatment of Hodgkin’s disease and CD30+ lymphoma. In vitro evaluation. Br J Haematol 1992; 81: 203–211.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pinto.

Additional information

Supported by the Associazione Italiana per la Ricerca sul Cancro; the Associazione Italiana contro le Leucemie, ‘Trenta ore per la vita’ and the Ministero della Sanità, Ricerca Finalizzata I.R.C.C.S., Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, A., Gattei, V., Zagonel, V. et al. Hodgkin’s disease: A disorder of dysregulated cellular cross-talk. Biotherapy 10, 309–320 (1998). https://doi.org/10.1007/BF02678551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678551

Key words

Navigation