Skip to main content
Log in

Modulation of cisPlatin cytotoxicity by interleukin-1α and resident tumor macrophages

  • Published:
Biotherapy

Abstract

The modulation of cisPlatin cytotoxicity by interleukin-1 (IL-1α) was studied in cultures of SCC-7 tumor cells with and without tumor macrophages to examine potential mechanisms for the synergistic antitumor activity of cisPlatin and IL-1α in SCC-7 solid tumors. Neither IL-1α nor tumor macrophages affected the survival of clonogenic tumor cells and IL-1α had no direct effect on tumor cell growthin vitro. Macrophages had no direct effect on cisPlatin sensitivity (IC90=6.0 µM), but, the addition of IL-1α (500–2000U/ml) to co-cultures of cisPlatin pretreated tumor cells and resident tumor macrophages increased cell killing (IC90=3.1 µM). Similar responses were seen in primary cultures treated with cisPlatin before IL-1α. The modulation of cisPlatin cytotoxicity by IL-1α exhibited a biphasic dose response that paralleled the IL-1α dose dependent release of H2O2by resident tumor macrophages. Further, IL-1α modification of cisPlatin cytotoxicity was prompt and inhibited by catalase. CisPlatin and exogenous H2O2 (50 µM) produced more than additive SCC-7 clonogenic cell kill and hydroxyl radicals played an important role in the response. Interleukin-1 modulation of cisPlatin cytotoxicity was schedule dependent. IL-1α treatment for 24 hrs, before cisPlatin, produced drug resistance (IC90=11.1 µM). Our study shows that IL-1α can stimulate tumor macrophages to release pro-oxidants that modify cellular chemosensitivity in a schedule and dose dependent fashion. Our findings may also provide a mechanistic explanation for the synergistic antitumor activity of cisPlatin and IL-1αin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenine triphosphate

GSH:

glutathione

HBSS:

Hanks Balanced Salt Solution

H2O2 :

hydrogen peroxide

IC90 :

concentration to inhibit activity by 90%

IL-1α:

human recombinant interleukin-1α

PMA:

4-beta-phorbol-12-beta-myristate 13-acetate

TCA:

trichloroacetic acid

TNF:

tumor necrosis factor

References

  1. Anderson CM, Buzaid AC, Ali-Osman, F., Braunschweiger, PG, Grimm, EA Biochemotherapy in the treatment of Advanced Melanoma: Clincal results and Potential Mechanisms of Antitumor Activity. In: Hortobagyi GN and Khayat D, eds. Cancer Chermotherapy, Cambridge MA: Blackwell Science Inc., IN PRESS.

  2. Neta R, Vogel SN, Plocinski JM, Tare NS, Benjamin W, Chizzonite R, Pilcher M. In Vivo modulation with anti-interleukin-1 (IL-1) receptor (p80) antibody 35F5 of the response to IL-1. The relationship of radioprotection, colony-stimulating factor, and IL-6. Blood 1990; 76: 57–62.

    PubMed  CAS  Google Scholar 

  3. Braunschweiger P, Johnson CS, Kumar N, Ord V, Furmanski P. Antitumor effects of recombinant human Interleukin 1α in RIF-1 and PancO2 solid tumors. Cancer Res. 1988; 48: 6011–6.

    PubMed  CAS  Google Scholar 

  4. Constantinidis I, Braunschweiger P, Wehrle J, Kumar N, Johnson CS, Furmanski P, Glickson JD. 31P-Nuclear magnetic resonance studies of the effect of recombinant human Interleukin 1α on the bioenergetics of RIF-1 tumors. Cancer Res. 1989; 49: 6379–82.

    PubMed  CAS  Google Scholar 

  5. Song CW, Lin J-C, Lyons JC. Antitumor effect of Interleukin-1 in combination with hyperthermia. Cancer Res. 1993; 53: 324–8.

    PubMed  CAS  Google Scholar 

  6. Braunschweiger PG, Kumar N, Constantinidis I, Wehrle JP, Glickson JD, Johnson CS, Furmanski P. Potentiation of interleukin 1α mediated antitumor effects by ketoconazole. Cancer Res. 1990; 50: 4709–17.

    PubMed  CAS  Google Scholar 

  7. Braunschweiger PG, Basrur VS, Santos O, Markoe AM, Houdek PV, Schwade JG. Synergistic antitumor activity of cisPlatin and interleukin-1 in sensitive and resistant solid tumors. Cancer Res. 1993; 53: 1091–7.

    PubMed  CAS  Google Scholar 

  8. Braunschweiger GP, Jones AS, Johnson SC, Furmanski P. Potentiation of mitomycin C and porfiromycin antitumor activity in solid tumor models by recombinent human Interleukin 1α. Cancer Res. 1991; 51: 5454–60.

    PubMed  CAS  Google Scholar 

  9. Braunschweiger PG, Jones SA, Johnson CS, Furmanski P. Interleukin-1 induced tumor pathophysiologies can be exploited with bio-reductive alkylating agents. Int J Radiat Biol 1991; 60: 369–72.

    Article  PubMed  CAS  Google Scholar 

  10. Teicher BA, Lazo JS and Sartorelli AC, Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res. 1981; 41: 73–81.

    PubMed  CAS  Google Scholar 

  11. Chong YC, Heppner GH, Paul LA and Fulton AM, Macrophage mediated induction of DNA strand breaks in target cells. Cancer Res. 1989; 49: 6652–7.

    PubMed  CAS  Google Scholar 

  12. Schraufstatter I, Hysolp PA, Jackson JH, Cochrane CG. Oxidant induced DNA damage of target cells. J of Clin. Invest. 1988; 82: 1040–50.

    Article  CAS  Google Scholar 

  13. Spitz DR, Malcolm RR, Roberts RJ. Cytotoxicity and metabolism of 4-hydroxy-2-nonenal and 2-nonenal in H2O2-resistant cell lines. Do aldehydic by-products of lipid peroxidation contribute to oxidative stress? Biochem J 1990; 267: 453–9.

    PubMed  CAS  Google Scholar 

  14. Eckl PM, Ortner A, Esterbauer H. Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes. Mutation Research 1993; 290: 183–92.

    PubMed  CAS  Google Scholar 

  15. Fu KK, DeGregorio MW, Phillips JW. Plasma and tumor concentrations of cisPlatin following intraperitoneal infusion or bolus injection with and without continuous low dose irradiation. NCI Monograph 1988; 6: 123–7.

    Google Scholar 

  16. Sevin BU, Peng ZL, Perras JP, Ganjei P, Penalver M, Averette HE. Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing. Gyn Oncol 1988; 31: 191–204.

    Article  CAS  Google Scholar 

  17. Freund M, Pick E. The mechanism of action of cytokines IX. The enzymatic basis of hydrogen peroxide production by lymphokine — activated macrophages. J. Immunol. 1986; 137: 1312–8.

    PubMed  CAS  Google Scholar 

  18. Zar JH Biostatistical Analysis. Englewood Cliffs, N.J., Prentice Hall Inc., 1974

    Google Scholar 

  19. Johnson CS, Chang M-J, Yu W-D, Modzelewski RA, Grandis JR, Vlock DR, Furmanski P. Synergistic enhancement by interleukin-1α of cisPlatin mediated antitumor activity in RIF-tumor bearing C3H/HeJ mice. Can Chemother and Pharmacol 1993; 32: 339–46.

    Article  CAS  Google Scholar 

  20. Grandis JR, Chang MJ, Yu WD, Johnson CS. Antitumor activity of interleukin-1 alpha and CisPlatin in a murine model system. Arch of Otolaryngol — Head & Neck Surgery 1995; 121: 197–200.

    CAS  Google Scholar 

  21. Chang MJ, Yu WD, Reyno LM, Modzelewski RA, Egorin MJ, Erkmen K, Vlock DR, Furmanski P, Johnson CS. Potentiation by interleukin 1 alpha of CisPlatin and carboplatin antitumor activity: schedule-dependent and pharmacokinetic effects in the RIF-1 tumor model. Cancer Res. 1994; 54: 5380–6.

    PubMed  CAS  Google Scholar 

  22. Suresh A, Sodhi A. Production of interleukin-1 and tumor necrosis factor by bone marrow-derived macrophages — Effect of cisPlatin and lipopolysaccharide. Immunol Letters 1991; 30: 93–100.

    Article  CAS  Google Scholar 

  23. Wu S, Boyer CM, Whitaker RS, Berchuck A, Wiener JR, Weinberg JB, Bast RCJ. Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: Monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Res. 1993; 53: 1939–44.

    PubMed  CAS  Google Scholar 

  24. Braunschweiger PG, Schiffer LM, Furmanski P. IH-NMR relaxation times and water compartmentalization in experimental tumor models. Mag Reson Imaging. 1986; 4: 335–42.

    Article  CAS  Google Scholar 

  25. Brown JM, White WC, Terada LS, Grosso MA, Shanley PL, Mulvin DW, Banerjee A, Whitman GJR Harken AH. Interleukin 1 pretreatment decreases ischemia/reperfusion injury. Cell Biol 1990; 87: 5026–30.

    CAS  Google Scholar 

  26. White WC, Ghezzi P, Protection against pulmonary oxygen toxicity by interleukin-1 and tumor necrosis factor: Role of antioxidant enzymes and effect of cycloxygenase inhibitors. Biotherapy 1989; 1: 361–7.

    Article  PubMed  CAS  Google Scholar 

  27. Basrur VS, Santos O, Perras JP, Sevin B-U, Braunschweiger PG. Acute Oxidant stress decreases cisPlatin resistance in murine and human tumor cells in vitro. Proc. AACR. 1993; 34: 402.

    Google Scholar 

  28. Begg AC, Stewart FA, Dewit L, Bartlink H. Interaction between cisPlatin and radiation in experimental rodent tumors and normal tissues. In: BT Hill and AS Bellamy (eds.), Antitumor Drug Radiation Interactions, vol. pp. 154–170. Boca Raton: CRC Press, 1990.

    Google Scholar 

  29. Holden S, Teicher BA, Ara G, Herman TS, Coleman CN. Enhancement of alkylating agent activity by SR4233 in FSaIIC murine fibrosarcoma. J Natl Cancer Instit 1992; 84: 187–93.

    Article  CAS  Google Scholar 

  30. Hamilton TC, Winker MA, Louie KG, Batist G, Behrens BC, Tsuruo T, Grotzinger KR, McKoy WM, Young RC, Ozols RF. Augmentation of adriamycin, Melphalan and cisplatin cytotoxicity in drug resistant and sensitive human ovarian carcinoma cell lines by buthione sulfoximine mediated glutathione depletion. Biochem Pharmacol 1985; 34: 2583–6.

    Article  PubMed  CAS  Google Scholar 

  31. Kelly SL, Basu A, Teicher BA, Hacker MP, Hamer H, Lazo JS. Overexpression of metallothionein confers resistance to anticancer drugs. Science. 1988; 214: 1813–5.

    Article  Google Scholar 

  32. Karin M, Imbra RJ, Heguy A and Wong G, interleukin-1 regulates metallothionein gene expression. Mol and Cell Biol 1985; 5: 2866–9.

    CAS  Google Scholar 

  33. Shull S, Heintz NH, Periasamy M, Manohar M, Janssen YM, Marsh JP, Mossman BT. Differential regulation of antioxidant enzymes in response to oxidants. J of Biol Chem 1991; 266: 24398–403.

    CAS  Google Scholar 

  34. Iijima Y, Fukushima T, Bhuiyan LA, Yamada T, Kosaka F, Satao JD. Synergistic and additive induction of metallothionein in Chang liver cells. A possible mechanism of marked Induction of metallothionein by stress. Febs 1990; 269: 218–20.

    Article  CAS  Google Scholar 

  35. Dominguez I, Panneerselvam N, Escalza P, Natarajan AT, Cortes F. Adaptive response to radiation damage in human lymphocytes conditioned with hydrogen peroxide as measured by the cytokinesis-block micronucleus technique. Mutation Res 1993; 301: 135–41.

    Article  PubMed  CAS  Google Scholar 

  36. Piantadosi CA, Tatro LG. Regional H2O2 concentration in rat brain after hyperoxic convulsions. Am J Physiol 1990; 69: 1761–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braunschweiger, P.G., Basrur, V.S., Cameron, D. et al. Modulation of cisPlatin cytotoxicity by interleukin-1α and resident tumor macrophages. Biotherapy 10, 129–137 (1997). https://doi.org/10.1007/BF02678540

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678540

Key words

Navigation