Ichthyological Research

, Volume 46, Issue 3, pp 233–244 | Cite as

Ontogeny of respiratory area of a marine teleost, porgy,pagrus major

  • Shin Oikawa
  • Masashi Hirata
  • Jun Kita
  • Yasuo Itazawa


Relationships of respiratory areas (gill, body surface and fin areas) (A) to body mass (W) were determined with a marine teleost, the porgyPagrus major of 0.0002–1230 g (just after hatch to 3+ years old), based on the allometric formula A=αWβ. (1) Early larvae (0.0002–0.0003 g) did not have the secondary lamellae that were responsible for gas exchange at the gills. After this stage, a tetraphasic relationship was observed between lamellar area (total area of secondary lamellae, often called gill area) (GAL) and boby mass. During the late larval and early juvenile stages, the GAL-W relationship showed a triphasic positive allometry with β-values of 3.773, 1.561 and 1.111 corresponding to the first half of the late larval stage (0.00034–0.001g), the second half of the stage (0.001–0.01 g) and the early juvenile stage (0.02–0.1 g), respectively, During the squamated juvenile and later stages (0.1–1080g), there was a negative allometry with a β-value of 0.813. (2) A triphasic relationship was observed between the total cutaneous surface area (body surface area and fin area) (CAb+f) and body mass. During the early larval stage, in which an increase of body mass was very small. from 0.0002 to 0.00025 g, CAb+p/W increased with growth with a β-value of 3.986. After this stage, the CAb+t W relationship showed a diphasic negative allometry with β-values of 0.562, during the late larval stage (0.00028–0.0045 g) and 0.652 during the early juvenile and later stages (0.0045–1230 g). (3) Based on these results, factors controlling the metabolism-size relationship are discussed.

Key words

Pagrus major gill area cutaneous area respiratory area metabolism-size relationship 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Akahiro, H., H. Ishii, I. Nonaka and H. Yoshida. 1988. A simple freeze-drying device usingt-butyl alcohol for SEM specimens. J. Electron Micros., 37: 351–352.Google Scholar
  2. Balke, E. 1957. Der O2-Konsum und die Tracheen-Innenfläche bei durch Trancheenkiemen atmenden Insektenlarven in Abhängigkeit von der Körpergrösse. Z. vergl. Physiol., 40: 415–439.CrossRefGoogle Scholar
  3. Bennett, M. B. 1988. Morphometric analysis of the gills of the European eel,Anguilla anguilla. J. Zool (London), 215: 549–560.Google Scholar
  4. Booth, J. H. 1978. The distribution of blood flow in the gills of fish: Application of a new technique to rainbow trout (Salmo gairdneri). J. Exp. Biol., 73: 119–129.Google Scholar
  5. Burggren, W. W. and A. W. Pinder 1991. Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu. Rev. Physiol., 53: 107–135.PubMedCrossRefGoogle Scholar
  6. De Silva, C. 1974. Development of the respiratory system in herring and plaice larvae. Pages 465–485 in J. H. S. Blaxter, ed. The early life history of fish. Springer-Verlag, Berlin.Google Scholar
  7. Duthie, G. G. and G. M. Hughes 1987. The effects of reduced gill area and hyperoxia on the oxygen consumption and swimming speed of rainbow trout, J. Exp. Biol., 127: 349–354.Google Scholar
  8. El-Fiky, N. and W. Wieser 1988. Life styles and patterns of development of gills and muscles in larval cyprinids (Cyprinidae: Teleostei). J. Fish. Biol., 33: 135–145.CrossRefGoogle Scholar
  9. Holeton, G. F. 1976. Respiratory morphometrics of white and red blooded antarctic fish. Comp. Biochem. Physiol., 54A: 215–220.CrossRefGoogle Scholar
  10. Hughes, G. M. 1966. The dimensions of fish gilis in relation to their function. J. Exp. Biol., 45: 177–195.PubMedGoogle Scholar
  11. Hughes, G. M. 1970. Morphological measurements on the gills of fishes in relation to their respiratory function. Folia Morph. (Praha), 18: 78–95.Google Scholar
  12. Hughes, G. M. and N. K. Al-Kadhomiy. 1988. Changes in scaling of respiratory systems during the development of fishes. J. Mar. Biol. Assoc. U.K., 68: 489–498.CrossRefGoogle Scholar
  13. Hughes, G. M., S. F. Perry and J. Piiper. 1986. Morphometry of the gills of the elasmobranchScyliorhinus stellaris in relation to body size. J. Exp. Biol., 121: 27–42.Google Scholar
  14. Hughes, G. M., B. R. Singh, G. Guha, S. C. Dube and J. S. D. Munshi. 1974. Respiratory surface areas of an air-breathing siluroid fishSaccobranchus (=Heteropneustes) fossilis in relation to body size. J. Zool. (London), 172: 215–232.Google Scholar
  15. Kisia, S. M. and G. M. Hughes. 1992. Estimation of oxygen-diffusing capacity in the gills of different sizes of tilapia,Tilapia niloticus. J. Zool. (London), 227: 405–415.Google Scholar
  16. Ludwig, W. 1956. Betrachtung über den Energiekonsum von Tieren mit Atmungsorganen von Zweierlei Typ. Z. vergl. Physiol. 39: 84–88.Google Scholar
  17. McDonald, D. G. and B. R. McMahon. 1977. Respiratory development in Arctic charSalvelinus alpinus under conditions of normoxia and chronic hypoxia. Can. J. Zool., 55: 1461–1467.PubMedCrossRefGoogle Scholar
  18. Muir, B. S. and G. M. Hughes. 1969. Gill dimensions for three species of tunny. J. Exp. Biol. 51: 271–285Google Scholar
  19. Oikawa, S. and Y. Itazawa. 1985. Gill and body surface areas of the carp in relation to body mass, with special reference to the metabolism-size relationship. J. Exp. Biol., 117: 1–14.Google Scholar
  20. Oikawa, S. and Y. Itazawa. 1992. Relationship between metabolic ratein vitro and body mass in a marine teleost, porgyPagrus major. Fish Physiol. Biochem., 10: 177–182.CrossRefGoogle Scholar
  21. Oikawa, S., Y. Itazawa and M. Gotoh. 1991. Ontogenetic change in the relationship between metabolic rate and body mass in a sea breamPagrus major (Temminck & Schlegel). J. Fish Biol., 38: 483–496.CrossRefGoogle Scholar
  22. Oikawa, S., T. Takeda and Y. Itazawa. 1994. Scale effects of MS-222 on a marine teleost, porgyPagrus major. Aquaculture, 121: 369–379.CrossRefGoogle Scholar
  23. Perna, S. A. and M. N. Fernandes. 1996. Gill morphometry of the facultative air-breathing loricariid fish,Hypostomus plecostomus (Walbaum) with special emphasis on aquatic respiration. Fish Physiol. Biochem., 15: 213–220.CrossRefGoogle Scholar
  24. Price, J. W. 1931. Growth and gill development in the small-mouthed black bass,Micropterus dolomien. Lacépède. Contrib. Franz. Theodore Stone Labo. the Ohio State Univ., 4: 1–46.Google Scholar
  25. Rombough, P. J. and B. M. Moroz. 1990. The scaling and potential importance of cutaneous and branchial surfaces in respiratory gas exchange in young chinook salmon (Oncorhynchus tshawytscha). J. Exp. Biol., 154: 1–12.Google Scholar
  26. Rombough, P. J. and D. Ure. 1991. Partioning of oxygen uptake between cutaneous and branchial surfaces in larval and young juvenile chinook salmonOncorhynchus tshawytscha. Physiol. Zool., 64: 717–727.Google Scholar
  27. Ultsch, G. R. 1973. A theoretical and experimental investigation of the relationships between metabolic rate, body size, and oxygen exchange capacity. Respir. Physiol. 18: 143–160.PubMedCrossRefGoogle Scholar
  28. Wells, P. R. and A. W. Pinder. 1996. The respiratory development of Atlantic salmon I. Morphometry of gills, yolk sac and body surface. J. Exp. Biol., 199: 2725–2736.PubMedGoogle Scholar
  29. Whitford, W. G. and V. H. Hutchison. 1967. Body size and metabolic rate in salamanders. Physiol. Zool., 40: 127–133.Google Scholar
  30. Wieser, W. 1984. A distinction must be made between the ontogeny and the phylogeny of metabolism in order to understand the mass exponent of energy, metabolism. Respir. Physiol., 55: 1–9.PubMedCrossRefGoogle Scholar
  31. Yadav, A. N., M. S. Prasad and B. R. Singh. 1990. Gross structure of the respiratory organs and dimensions of the gill in the mud-skipper,Periophthalmodon schlosseri (Bleeker). J. Fish Biol., 37: 383–392.CrossRefGoogle Scholar
  32. Yamamoto, T. 1949, Experiments on animal physiology. Kawade-Syobo, Tokyo, vii + 212 pp. (In Japanese.)Google Scholar

Copyright information

© The Ichthyological Society of Japan 1999

Authors and Affiliations

  • Shin Oikawa
    • 1
  • Masashi Hirata
    • 1
  • Jun Kita
    • 1
  • Yasuo Itazawa
    • 1
  1. 1.Department of Fisheries, Faculty of AgricultureKyushu UniversityFukuokaJapan

Personalised recommendations