Skip to main content
Log in

Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133 SPECT

  • Published:
Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2001

Abstract

Absolute regional cerebral blood flow (CBF) was measured in ten healthy volunteers, using both dynamic susceptibility-contrast (DSC) magnetic resonance imaging (MRI) and Xe-133 SPECT within-4 h. After i.v. injection of Gd-DTPA-BMA (0.3 mmol/kg b.w.), the bolus was monitored with a Simultaneous Dual FLASH pulse sequence (1.5 s image), providing one slice through brain tissue and a second slice through the carotid artery. ConcentrationC(t)x − (1 TE) ln[S(t)/S(0)] was related to CBF asC(t)=CBF [AIF(t)⊗R(t)], where AIF is the arterial input function andR(t) is the residue function. A singular-value-decomposition-based deconvolution technique was used for retrieval ofR(t). Absolute CBF was given by Zierler’s area-to-height relation and the central volume principle. For elimination of large vessels (ELV), all MRI-based CBF values exceeding 2.5 times the mean CBF value of the slice were excluded. A correction for partial-volume effects (CPVE) in the artery used for AIF monitoring was based on registration of signal in a phantom with tubes of various diameters (1.5–6.5 mm), providing an individual concentration correction factor applied to AIF data registered in vivo. In the Xe-133 SPECT investigation, 3000–4000 MBq of Xe-133 was administered intravenously, and CBF was calculated using the Kanno-Lassen algorithm. When ELV and CPVE were applied. DSC-MRI showed average CBF values from the entire slice of 43±10 ml/(min 100 g) (small-artery AIF) and 48±17 ml (min 100 g) (carotid-artery AIF) (mean±S.D.,n=10). The corresponding Xe-133-SPECT-based CBF was 33±6 ml (min 100 g) (n=10). The relationships of CBF(MRI) versus CBF(SPECT) showed good linear correlation (r=0.74–0.83).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–65.

    Article  PubMed  CAS  Google Scholar 

  2. Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41.

    PubMed  CAS  Google Scholar 

  3. Lassen NA. Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metab 1984;4:633–4.

    Article  PubMed  CAS  Google Scholar 

  4. Vonken EPA, van Osch MJP, Bakker CJG, Viergever MA. Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999;10:109–17.

    Article  PubMed  CAS  Google Scholar 

  5. Müller TB, Jones RA, Haraldseth O, Westby J, Unsgård G. Comparison of MR perfusion imaging and microsphere measurements of regional cerebral blood flow in a rat model of middle cerebral artery occlusion. Magn Reson Imaging 1996;14:1177–83.

    Article  PubMed  Google Scholar 

  6. Wittlich F, Kohno K, Mies G, Norris DG, Hoehn-Berlage M. Quantitative measurement of regional blood flow with gadolinium diethylenetriaminepentaacetate bolus track NMR imaging in cerebral infarcts in rats: validation with the iodo[14C]antipyrine technique. Proc Natl Acad Sci USA 1995;92:1846–50.

    Article  PubMed  CAS  Google Scholar 

  7. Ernst T, Chang L, Itti L, Speck O. Correlation of regional cerebral blood flow from perfusion MRI and SPECT in normal subjects. Magn Reson Imaging 1999;17:349–54.

    Article  PubMed  CAS  Google Scholar 

  8. Østergaard L, Smith DF, Vestergaard-Poulsen P, Hansen SB, Gee AD, Gjedde A, Gyldensted C. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 1998;18:425–32.

    Article  PubMed  Google Scholar 

  9. Østergaard L, Johannsen P, Høst-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C. Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [15O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998;18:935–40.

    Article  PubMed  Google Scholar 

  10. Hagen T, Bartylla K, Piepgras U. Correlation of regional cerebral blood flow measured by stable xenon CT and perfusion MRI. J Comput Assist Tomogr 1999;23:257–64.

    Article  PubMed  CAS  Google Scholar 

  11. Perman WH, Gado MH, Larson KB, Perlmutter JS. Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 1992;28:74–83.

    Article  PubMed  CAS  Google Scholar 

  12. Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, Brady TJ. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 1991;17:336–47

    Article  PubMed  CAS  Google Scholar 

  13. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C, 2nd ed. Cambridge: Cambridge University Press, 1992.

    Google Scholar 

  14. Wirestam R, Andersson L, Østergaard L, Bolling M, Aunola J-P, Lindgren A, Geijer B, Holtås S, Ståhlberg F. Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 2000;43:691–700.

    Article  PubMed  CAS  Google Scholar 

  15. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–25.

    Article  PubMed  Google Scholar 

  16. Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G. Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 2000;43:559–64.

    Article  PubMed  CAS  Google Scholar 

  17. Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309–21.

    Article  PubMed  CAS  Google Scholar 

  18. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee T-Y. Dynamic CT measurement of cerebral blood flow: a validation study. Am J Neuroradiol 1999;20:63–73.

    PubMed  CAS  Google Scholar 

  19. Lassen NA. Cerebral blood flow tomography with xenon-133. Semin Nucl Med 1985;15:347–56.

    Article  PubMed  CAS  Google Scholar 

  20. Kanno I, Lassen NA. Two methods for calculating regional cerebral blood flow from emission compured tomography of inert gas concentrations. J Comput Assist Tomogr 1979;3:71–6.

    Article  PubMed  CAS  Google Scholar 

  21. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T. Cerebral blood flow, blood volume and oxygen utilization. Brain 1990;113:27–47.

    Article  PubMed  Google Scholar 

  22. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time? Magn Reson Med 1993;29:553–9.

    Article  PubMed  CAS  Google Scholar 

  23. Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 1996;36:726–36.

    Article  PubMed  Google Scholar 

  24. Scholdei R, Wenz F, Rempp K, Schreiber W, Fuss M, Essig M, Brix G. Determination of the arterial input function (AIF) in dynamic susceptibility contrast MRI (DSC). In: Proceedings of the ISMRM 4th Annual Meeting, New York, 1996:1301.

  25. Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RM, Hyde JS. Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med 1998;39:410–6.

    Article  PubMed  CAS  Google Scholar 

  26. Köstler H, Becker H. The value of gating and flow compensation for measurements of the arterial input function in dynamic susceptibility contrast MRI. MAGMA 1996;4(Suppl.):68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wirestam.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02668651.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirestam, R., Ryding, E., Lindgren, A. et al. Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133 SPECT. MAGMA 11, 96–103 (2000). https://doi.org/10.1007/BF02678472

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678472

Keywords

Navigation