Skip to main content
Log in

Approximation order provided by refinable function vectors

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper we considerL p-approximation by integer translates of a finite set of functionsϕ v (v=0, ...,r − 1) which are not necessarily compactly supported, but have a suitable decay rate. Assuming that the function vectorϕ=(ϕ =0/ r−1 is refinable, necessary and sufficient conditions for the refinement mask are derived. In particular, if algebraic polynomials can be exactly reproduced by integer translates ofϕ v, then a factorization of the refinement mask ofϕ can be given. This result is a natural generalization of the result for a single functionϕ, where the refinement mask ofϕ contains the factor ((1 +e iu)/2)m if approximation orderm is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. K. Alpert (1993):A class of bases in L 2 for the sparse representation of integral operators. SIAM J. Math. Anal.,24:246–262.

    Article  MATH  Google Scholar 

  2. C. de Boor, R. A. DeVore, A. Ron (1994):Approximation from shift-invariant subspaces of L 2(℞d). Trans. Amer. Math. Soc.,341:787–806.

    Article  MATH  Google Scholar 

  3. C. de Boork, R. A. DeVore, A. Ron (1994):The structure of finitely generated shift-invariant spaces in L 2(℞d). J. Funct. Anal.,119(1):37–78.

    Article  Google Scholar 

  4. P. L. Butzer, R. J. Nessel (1971): Fourier Analysis and Approximation. Basel: Birkhäuser Verlag.

    MATH  Google Scholar 

  5. A. Cavaretta, W. Dahmen, C. A. Micchelli (1991):Stationary subdivision. Mem. Amer. Math.Soc.,453:1–186.

    Google Scholar 

  6. C. K. Chui (1992): An Introduction to Wavelets. Boston: Academic Press.

    MATH  Google Scholar 

  7. I. Daubechies (1988):Orthonormal bases of wavelets with compact support. Pure Appl. Math.,41:909–996.

    Article  MATH  Google Scholar 

  8. I. Daubechies (1992): Ten Lectures on Wavelets. Philadelphia, PA, SIAM.

    MATH  Google Scholar 

  9. I. Daubechies, J. Lagarias (1992):Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal.23:1031–1079.

    Article  MATH  Google Scholar 

  10. G. Donovan, J. S. Geronimo, D. P. Hardin, P. R. Massopust (to appear):Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal.

  11. N. Dyn, I. R. H. Jackson, D. Levin, A. Ron (1992):On multivariate approximation by the integer translates of a basis function. Israel J. Math.,78:95–130.

    MATH  Google Scholar 

  12. T. N. T. Goodman, S. L. Lee (1994): Wavelets of Multiplicityr. Trans. Amer. Math. Soc.342:307–324.

    Article  MATH  Google Scholar 

  13. T. N. T. Goodman, S. L. Lee, W. S. Tang (1993):Wavelets in wandering subspaces. Trans. Amer. Math. Soc.,338:639–654.

    Article  MATH  Google Scholar 

  14. E. J. Halton, W. A. Light (1993):On local and controlled approximation order. J. Approx. Theory,72:268–277.

    Article  MATH  Google Scholar 

  15. C. Heil, G. Strang, V. Strela (to appear):Approximation by translates of refinable functions. Numer. Math.

  16. L. Hervé (1994):Multi-resolution analysis of multiplicity d. Application to dyadic interpolation. Appl. Comput. Harmonic Anal.,1:299–315.

    Article  MATH  Google Scholar 

  17. R.-Q. Jia, J. J. Lei (1993):Approximation by multi-integer translates of functions having global support. J. Approx. Theory,72:2–23.

    Article  MATH  Google Scholar 

  18. P. G. Lemarié-Rieusset (1993):Ondelettes généralisées et fonctions déchelle à support compact. Rev. Mat. Iberoamer.9:333–371.

    MATH  Google Scholar 

  19. W. A. Light (1991):Recent developments in the Strang-Fix theory for approximation orders. In: Curves and Surfaces (P. J. Laurent, A. le Méhauté, L. L. Schumaker, eds.). New York: Academic Press, pp. 297–306.

    Google Scholar 

  20. G. Plonka (1995):Two-scale symbol and autocorrelation symbol for B-splines with multiple knots. Adv. in Comput. Math.,3:1–22.

    Article  MATH  Google Scholar 

  21. G. Plonka (to appear):Generalized spline wavelets. Constr. Approx.

  22. I. J. Schoenberg (1946):Contributions to the problem of approximation of equidistant data by analytic functions, part A. Quart. Appl. Math.,4:45–99.

    Google Scholar 

  23. I. J. Schoenberg (1972):Cardinal Interpolation and spline functions: II. Interpolation of data of power growth. J Approx. Theory,6:404–420.

    Article  MATH  Google Scholar 

  24. G. Strang, G. Fix (1973):A Fourier analysis of the finite element variational method. In: Constructive Aspects of Functional Analysis (G. Geymonat, ed.). C.I.M.E., pp. 793–840.

  25. G. Strang, V. Strela (1994):Orthogonal multiwavelets with vanishing moments. J Opt. Engrg.,33:2104–2107.

    Article  Google Scholar 

  26. G. Strang, V. Strela (1995):Short wavelets and matrix dilation equations. IEEE Trans. SP,43:108–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Carl de Boor.

Dedicated to Professor L. Berg on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plonka, G. Approximation order provided by refinable function vectors. Constr. Approx 13, 221–244 (1997). https://doi.org/10.1007/BF02678465

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678465

AMS classification

Key words and phrases

Navigation