Skip to main content

Advertisement

Log in

Heat shock proteins and the antitumor T cell response

  • Published:
Biotherapy

Abstract

Heat shock proteins (HSP) have been shown to participate in the antitumor T cell response. First, HSP play a crucial role in the intracellular pathway for antigen processing where HSP can make complexes with a broad spectrum of cellular proteins and peptides through their chaperone functions. In this pathway, macrophages are required for processing the chaperoned peptides to make stable molecules with the major histocompatibility complex (MHC) class I molecules, even when HSP-peptide complexes are exogenously administered. Through this pathway, vaccination with HSP-peptide complexes is thus able to elicit the response of CD8+ T cells specific for the chaperoned peptides. These findings suggest an essential role of HSP in ‘cross-priming’ and their usefulness for antitumor vaccination with tumor peptides. Second, HSP have been suggested to be expressed on the cell surface by transformation and, in addition, to function as antigen-presenting molecules for double negative T cells. Third, HSP derived from tumor cells have reportedly been recognized by T cells with either T cell receptor (TCR)-αβ or TCR-γδ. These lines of evidence therefore indicate that HSP may be potentially promising target molecules for antitumor T cell immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

antigen-presenting cell(s)

CTL:

cytotoxic T lymphocyte(s)

ER:

endoplasmic reticulum

HLA:

human leukocyte antigen

HSP:

heat shock protein(s)

MHC:

major histocompatibility complex

TAP:

transporter associated with antigen processing

TCR:

T cell receptor

TRA:

tumor rejection antigen

References

  1. Craig EA, Weissman JS, Horwich AL. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 1994; 78: 365–72.

    Article  PubMed  CAS  Google Scholar 

  2. Young RA. Stress proteins and immunology, Annu Rev Immunol 1990; 8: 401–20.

    Article  PubMed  CAS  Google Scholar 

  3. Kaufmann SHE. Heat shock proteins and the immune response. Immunol Today 1990; 11: 129–36.

    Article  PubMed  CAS  Google Scholar 

  4. Van Eden W, Heat-shock proteins as immunogenic bacterial antigens with the potentail to induce and regulate autoimmune arthritis. Immunol Rev 1991; 121: 5–28.

    Article  PubMed  Google Scholar 

  5. Srivastava PK, Maki RG. Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol 1991; 167: 109–23.

    PubMed  CAS  Google Scholar 

  6. Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 1986; 83: 3407–11.

    Article  PubMed  CAS  Google Scholar 

  7. Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E. A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci USA 1986; 83: 3121–25.

    Article  PubMed  CAS  Google Scholar 

  8. Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 1994; 39: 93–8.

    Article  PubMed  CAS  Google Scholar 

  9. Konno A, Sato N, Yagishita A, Torigoe T, Cho J, Torimoto K, Hara I, Wada Y, Okubo M, Takahashi N, Kikuchi K. Heat- or stress-inducible transformation-associated cell surface antigen on the activated H-ras oncogene-transformed rat fibroblast. Cancer Res 1989; 49: 6578–82.

    PubMed  CAS  Google Scholar 

  10. Tamura Y, Tsuboi N, Sato N, Kikuchi K. 70 kDa heat shock cognate protein is a transformation-associated antigen and a possible target for host’s anti-tumor immunity. J Immunol 1993; 151: 5516–24.

    PubMed  CAS  Google Scholar 

  11. Takahashi S, Sato N, Kishi A, Tamura Y, Hirai I, Torigoe T, Yagishita A, Takahashi S, Sagae S, Kudo R, Kikuchi K. Involvement of peptide antigens in the cytotoxicity between 70-kDa heat shock cognate protein-like molecule and CD3+, CD4, CD8, TCR-αβ killer T cells. J Immunol 1996; 157: 3391–5.

    PubMed  Google Scholar 

  12. Harada M, Matsuzaki G, Yoshikai Y, Kobayashi N, Kurosawa S, Takimoto H, Nomoto K. Autoreactive and heat shock protein 60-recognizing CD4+ T-cells show antitumor activity against syngeneic fibrosarcoma. Cancer Res 1993; 53: 106–11.

    PubMed  CAS  Google Scholar 

  13. Yoshino I, Goedegebuure PS, Peoples GE, Lee KY, Eberlein TJ. Human tumor-infiltrating CD4+ T cells react to B cell lines expressing heat shock protein 70. J Immunol 1994; 153: 4149–58.

    PubMed  CAS  Google Scholar 

  14. Maki RG, Old LJ, Srivastava PK. Human homologue of murine tumor rejection antigen gp96: 5′-regulatory and coding regions and relationship to stress-induced proteins. Proc Natl Acad Sci USA 1990; 87: 5658–62.

    Article  PubMed  CAS  Google Scholar 

  15. Lindquist S, Craig EA. The heat shock proteins. Annu Rev Genet 1988; 22: 631–77.

    Article  PubMed  CAS  Google Scholar 

  16. Li Z, Srivastava PK. Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 1993; 12: 3143–51.

    PubMed  CAS  Google Scholar 

  17. Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 1993; 178: 1391–6.

    Article  PubMed  CAS  Google Scholar 

  18. Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90 and hsp 70. J Immunol 1994; 152: 5398–403.

    PubMed  CAS  Google Scholar 

  19. Lammert E, Arnold D, Nijenhuis M, Momburg F, Hämmerling GJ, Brunner J, Stevanovic S, Rammensee H, Schild H. The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP. Eur J Immunol 1997; 27: 923–7.

    Article  PubMed  CAS  Google Scholar 

  20. Udono H, Levey DL, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cellsin vivo. Proc Natl Acad Sci USA 1994; 91: 3077–81.

    Article  PubMed  CAS  Google Scholar 

  21. Zinkernagel R, Doherty P. Restriction ofin vitro T-cell mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semi-allogeneic system. Nature 1974; 248: 701–2.

    Article  PubMed  CAS  Google Scholar 

  22. Bevan MJ. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congeneic cells which do not cross-react in the cytotoxic assay. J Exp Med 1976; 143: 1283–8.

    Article  PubMed  CAS  Google Scholar 

  23. Matzinger P, Bevan MJ. Induction of H-2-restricted cytotoxic T cells:in vivo induction has the appearance of being unrestricted. Cell Immunol 1977; 33: 92–100.

    Article  PubMed  CAS  Google Scholar 

  24. Pfeifer JD, Wick MJ, Roberts RL, Findlay K, Normark SJ, Harding CV. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 1993; 361: 359–62.

    Article  PubMed  CAS  Google Scholar 

  25. Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogeneous antigens presented on MHC class I molecules. Science 1995; 267: 243–6.

    Article  PubMed  CAS  Google Scholar 

  26. Norbury CC, Hewlett LJ, Prescott AR, Shastri N, Watts C. Class I MHC presentation of exogeneous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 1995; 3: 783–91.

    Article  PubMed  CAS  Google Scholar 

  27. Huang AYC, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961–5.

    Article  PubMed  CAS  Google Scholar 

  28. Huang AYC, Bruce AT, Pardoll DM, Levitsky HI. In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter. Immunity 1996; 4: 349–55.

    Article  PubMed  CAS  Google Scholar 

  29. Toes REM, Blom RJJ, Voort EVD, Offringa R, Melief CJM, Kast WM. Protective antitumor immunity induced by immunization with completely allogeneic tumor cells. Cancer Res 1996; 56: 3782–7.

    PubMed  CAS  Google Scholar 

  30. Suto R, Srivastava PK. A mechanisum for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995; 269: 1585–8.

    Article  PubMed  CAS  Google Scholar 

  31. Arnold D, Faath S, Rammensee H, Schild H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 1995; 182: 885–9.

    Article  PubMed  CAS  Google Scholar 

  32. Corr M, Lee DJ, Carson DA, Tighe H. Gene vaccination with naked plasmid DNA: mechanisum of CTL priming. J Exp Med 1996; 184: 1555–60.

    Article  PubMed  CAS  Google Scholar 

  33. Sargent CA, Dunham I, Trowsdale J, Campbell RD. Human major histocompatibility complex contains genes for the major heat shock protein hsp70. Proc Natl Acad Sci USA 1989; 86: 1968–72.

    Article  PubMed  CAS  Google Scholar 

  34. Srivastava PK, Heike M. Tumor-specific immunogenicity of stress-induced proteins: convergence of two evolutionary pathway of antigen presentation? Semi Immunol 1991; 3: 57–64.

    CAS  Google Scholar 

  35. Shiohara T, Ruddle NM, Horowitz M, Moellmann GE, Lerner AB. Anti-tumor activity of class II MHC antigen-restricted cloned autoreactive T cells. I. destruction of B16 melanoma cells mediated bystander cytolysisin vivo. J Immunol 1987; 138: 1971–8.

    PubMed  CAS  Google Scholar 

  36. Sasaki J, Dejehansart M, Bruyn JD. The expression of mycobacterial heat shock protein (HSP64) on Meth A tumor cells. Immunol Cell Biol 1994; 72: 415–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lukacs KV, Lowrie DB, Stokes RW, Colston MJ. Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med 1993; 178: 343–8.

    Article  PubMed  CAS  Google Scholar 

  38. O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK. Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived fromMycobacterium tuberclosis. Cell 1989; 57: 667–74.

    Article  PubMed  CAS  Google Scholar 

  39. Holoshitz J, Koning F, Coligan JE, Bruyn JD, Strober S. Isolation of CD4 CD8 mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 1989; 339: 226–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hiromatsu K, Yoshikai Y, Matsuzaki G, Ohga S, Muramori K, Matsumoto K, Bluestone JA, Nomoto K. A protective role ofγ/δ T cells in primary infection withListeria monocytogenes in mice. J Exp Med 1992; 175: 49–56.

    Article  PubMed  CAS  Google Scholar 

  41. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, Voss SD, Lawrence W, DeMars R, Welch WJ, Bolhuis RLH, Sondel PM. Recognition by human Vγ9/Vδ2 T cells of a groEL homolog on Daudi Burkitt’s lymphoma cells. Science 1990; 250: 1269–73.

    Article  PubMed  CAS  Google Scholar 

  42. Kaur I, Voss SD, Gupta RS, Schell K, Fisch P, Sondel P. Human peripheralγδ T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. J Immunol 193; 150: 2046–55.

  43. Häcker G, Kromer S, Falk M, Heeg K, Wagner H, Pfeffer K. Vδ1+ subset of human γδ T cells responds to ligands expressed by EBV-infected Burkitt lymphoma cells and transformed B lymphocytes. J Immunol 1922; 149: 3984–89.

    Google Scholar 

  44. Wright A, Lee JE, Link MP, Smith SD, Carrol W, Levy R, Clayberger C, Krensky AM. Cytotoxic T lymphocytes specific for self tumor immunoglobulin express T cell receptorδ chain. J Exp Med 1989; 169: 1557–64.

    Article  PubMed  CAS  Google Scholar 

  45. Kim HT, Nelson EL, Clayberger C, Sanjanwala M, Sklar J, Krensky AM.γδ T cell recognition of tumor Ig peptide. J Immunol. 1995; 154: 1614–23.

    PubMed  CAS  Google Scholar 

  46. Wei Y, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A. Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 1994; 54: 4952–57.

    PubMed  CAS  Google Scholar 

  47. Wei Y, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A. Induction of of autologous tumor killing by heat treatment of fresh human tumor cells: involvement ofγδ T cells and heat shock protein 70. Cancer Res 1996; 56: 1104–10.

    PubMed  CAS  Google Scholar 

  48. Ericsson P, Hansson J, Widegren B, Dohlsten M, Sjögren H, Hedlund G.In vivo induction ofγ/δ T cells with highly potent and selective anti-tumor cytotoxicity. Eur J Immunol 1991; 21: 2797–802.

    Article  PubMed  CAS  Google Scholar 

  49. Multhoff G, Botzler C, Weisnet M, Eißner G, Issels R. CD3 large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 1995; 86: 1374–82.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Harada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, M., Kimura, G. & Nomoto, K. Heat shock proteins and the antitumor T cell response. Biotherapy 10, 229–235 (1998). https://doi.org/10.1007/BF02678301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678301

Key words

Navigation